Abstract
Semantic GP is a promising approach that introduces semantic awareness during genetic evolution. This paper presents a new Semantic GP approach based on Dynamic Target (SGP-DT) that divides the search problem into multiple GP runs. The evolution in each run is guided by a new (dynamic) target based on the residual errors. To obtain the final solution, SGP-DT combines the solutions of each run using linear scaling. SGP-DT presents a new methodology to produce the offspring that does not rely on the classic crossover. The synergy between such a methodology and linear scaling yields to final solutions with low approximation error and computational cost. We evaluate SGP-DT on eight well-known data sets and compare with \(\epsilon \)-lexicase, a state-of-the-art evolutionary technique. SGP-DT achieves small RMSE values, on average 23.19% smaller than the one of \(\epsilon \)-lexicase.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(f(x)=10/(5 + \sum _{i=1}^{5} (x_i -3)^2)\).
- 2.
- 3.
calculated with \(((M_T- M_D)/M_T) \cdot 100\), where \(M_D\) is the median RMSE of SGP-DT and \(M_T\) is the one of the competing technique.
- 4.
for readability reasons we omitted 4 out-layers for lasso, 13 for \(\epsilon \)-lexicase, 30 for SGP-DT, 30 for DT-NM and 35 for DT-EM.
References
Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). https://doi.org/10.1007/s10710-013-9210-0
Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386 (2015). https://doi.org/10.1007/s10710-014-9239-8
O’Neill, M.: Semantic methods in genetic programming. Genet. Program. Evolvable Mach. 17(1), 3–4 (2016). https://doi.org/10.1007/s10710-015-9254-4
McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9_12
Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3
Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7
Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point crossover and point mutation. Evol. Comput. 6(3), 231–252 (1998)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)
La Cava, W., Spector, L., Danai, K.: Epsilon-Lexicase selection for regression. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2016), pp. 741–748 (2016)
Nicolau, M., Agapitos, A.: On the effect of function set to the generalisation of symbolic regression models. In: Proceedings of the Companion of the Conference on Genetic and Evolutionary Computation (GECCO 2018), pp. 272–273 (2018)
Ruberto, S., Vanneschi, L., Castelli, M.: Genetic programming with semantic equivalence classes. Swarm Evol. Comput. 44, 453–469 (2019)
Keijzer, M.: Scaled symbolic regression. Genet. Program. Evolvable Mach. 5(3), 259–269 (2004). https://doi.org/10.1023/B:GENP.0000030195.77571.f9
Gerules, G., Janikow, C.: A survey of modularity in genetic programming. In: the IEEE Congress on Evolutionary Computation (CEC 2016), pp. 5034–5043 (2016)
Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genet. Program. Evolvable Mach. 14(1), 31–63 (2013). https://doi.org/10.1007/s10710-012-9172-7
Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based genetic programming. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 53–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_5
Liskowski, P., Krawiec, K.: Online discovery of search objectives for test-based problems. Evol. Comput. 25(3), 375–406 (2017)
Otero, F.E.B., Johnson, C.G.: Automated problem decomposition for the boolean domain with genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 169–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_15
Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed take on semantic GP. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 935–942 (2014)
Arnaldo, I., Krawiec, K., O’Reilly, U.M.: Multiple regression genetic programming. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 879–886 (2014)
Ruberto, S., Vanneschi, L., Castelli, M., Silva, S.: ESAGP – a semantic GP framework based on alignment in the error space. In: Nicolau, M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 150–161. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3_13
Vanneschi, L., Castelli, M., Scott, K., Trujillo, L.: Alignment-based genetic programming for real life applications. Swarm Evol. Comput. 44, 840–851 (2019)
Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear system modeling. Neural Comput. Appl. 21(1), 171–187 (2012)
Oliveira, L.O.V.B., Otero, F.E.B., Pappa, G.L., Albinati, J.: Sequential symbolic regression with genetic programming. In: Riolo, R., Worzel, W.P., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XII. GEC, pp. 73–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16030-6_5
Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: Wave: a genetic programming approach to divide and conquer. In: Proceedings of the Companion of the Conference on Genetic and Evolutionary Computation. (GECCO 2015), pp. 1435–1436 (2015)
Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: A new wave: a dynamic approach to genetic programming. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2016), pp. 757–764 (2016)
Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
White, D.R., Mcdermott, J., Castelli, M., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013). https://doi.org/10.1007/s10710-012-9177-2
Cava, W.L., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis of Lexicase selection and \(\varepsilon \)-Lexicase selection. Evol. Comput. 27, 1–28 (2018)
Orzechowski, P., Cava, W.L., Moore, J.H.: Where are we now?: A large benchmark study of recent symbolic regression methods. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2018), pp. 1183–1190 (2018)
Castelli, M., Trujillo, L., Vanneschi, L., Silva, S. Geometric semantic genetic programming with local search. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2015), pp. 999–1006 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ruberto, S., Terragni, V., Moore, J.H. (2020). SGP-DT: Semantic Genetic Programming Based on Dynamic Targets. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-44094-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44093-0
Online ISBN: 978-3-030-44094-7
eBook Packages: Computer ScienceComputer Science (R0)