iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-39881-1_28
An Experimental Study of a 1-Planarity Testing and Embedding Algorithm | SpringerLink
Skip to main content

An Experimental Study of a 1-Planarity Testing and Embedding Algorithm

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2020)

Abstract

A graph is 1-planar if it can be drawn in the plane with at most one crossing per edge. The 1-planarity testing problem is NP-complete, even for restricted classes of graphs. We present the first general 1-planarity testing and embedding algorithm, and we experimentally investigate its feasibility in practice. The results suggest that our approach can be successfully applied to graphs with up to 30 vertices, while more sophisticated techniques are needed to attack larger graphs.

Work partially supported by MIUR, under Grant 20174LF3T8 AHeAD: efficient Algorithms for HArnessing networked Data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.graphdrawing.org/data.html. Accessed June 2019

  2. Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 22(1), 23–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binucci, C., Didimo, W., Montecchiani, F.: An experimental study of a 1-planarity testing and embedding algorithm. CoRR arXiv:1911.00573 (2019)

  6. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorithmica 80(1), 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandenburg, F.J.: Characterizing and recognizing 4-map graphs. Algorithmica 81(5), 1818–1843 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Handbook of Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013)

    Google Scholar 

  11. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  12. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7, 303–325 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Giacomo, E., et al.: Ortho-polygon visibility representations of embedded graphs. Algorithmica 80(8), 2345–2383 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

    Article  Google Scholar 

  15. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_2

    Chapter  MATH  Google Scholar 

  17. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Binucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binucci, C., Didimo, W., Montecchiani, F. (2020). An Experimental Study of a 1-Planarity Testing and Embedding Algorithm. In: Rahman, M., Sadakane, K., Sung, WK. (eds) WALCOM: Algorithms and Computation. WALCOM 2020. Lecture Notes in Computer Science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39881-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39880-4

  • Online ISBN: 978-3-030-39881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics