Abstract
A graph is 1-planar if it can be drawn in the plane with at most one crossing per edge. The 1-planarity testing problem is NP-complete, even for restricted classes of graphs. We present the first general 1-planarity testing and embedding algorithm, and we experimentally investigate its feasibility in practice. The results suggest that our approach can be successfully applied to graphs with up to 30 vertices, while more sophisticated techniques are needed to attack larger graphs.
Work partially supported by MIUR, under Grant 20174LF3T8 AHeAD: efficient Algorithms for HArnessing networked Data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
http://www.graphdrawing.org/data.html. Accessed June 2019
Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)
Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)
Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 22(1), 23–49 (2018)
Binucci, C., Didimo, W., Montecchiani, F.: An experimental study of a 1-planarity testing and embedding algorithm. CoRR arXiv:1911.00573 (2019)
Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)
Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorithmica 80(1), 1–28 (2018)
Brandenburg, F.J.: Characterizing and recognizing 4-map graphs. Algorithmica 81(5), 1818–1843 (2019)
Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)
Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Handbook of Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)
Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7, 303–325 (1997)
Di Giacomo, E., et al.: Ortho-polygon visibility representations of embedded graphs. Algorithmica 80(8), 2345–2383 (2018)
Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)
Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)
Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_2
Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)
Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017)
Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Binucci, C., Didimo, W., Montecchiani, F. (2020). An Experimental Study of a 1-Planarity Testing and Embedding Algorithm. In: Rahman, M., Sadakane, K., Sung, WK. (eds) WALCOM: Algorithms and Computation. WALCOM 2020. Lecture Notes in Computer Science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-39881-1_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39880-4
Online ISBN: 978-3-030-39881-1
eBook Packages: Computer ScienceComputer Science (R0)