iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-37599-7_53
Approximating Probabilistic Constraints for Surgery Scheduling Using Neural Networks | SpringerLink
Skip to main content

Approximating Probabilistic Constraints for Surgery Scheduling Using Neural Networks

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11943))

Abstract

The problem of generating surgery schedules is formulated as a mathematical model with probabilistic constraints. The approach presented uses modern machine learning to approximate the model’s probabilistic constraints. The technique is inspired by models that use slacks in capacity planning. Essentially a neural-network is used to learn linear constraints that will replace the probabilistic constraint. The data used to learn these constraints is verified and labeled using Monte Carlo simulations. The solutions iteratively discovered, during the optimization procedure, produce also new training data. The neural-network continues its training on this data until the solution discovered is verified to be feasible. The stochastic surgery model studied is inspired by real challenges faced by many hospitals today and tested on real-life data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cappanera, P., Visintin, F., Banditori, C.: Addressing conflicting stakeholders’ priorities in surgical scheduling by goal programming. Flex. Serv. Manuf. J. 30(1), 252–271 (2018)

    Article  Google Scholar 

  2. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)

    Article  Google Scholar 

  3. Denton, B., Miller, A.J., Balasubramanian, H.J., Huschka, T.R.: Optimal allocation of surgery blocks to operating rooms under uncertainty. Oper. Res. 58(4–part–1), 802–816 (2010)

    Article  MathSciNet  Google Scholar 

  4. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization. Constraints 23(3), 296–309 (2018)

    Article  MathSciNet  Google Scholar 

  5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, June 2011, pp. 315–323 (2011)

    Google Scholar 

  6. Guido, R., Conforti, D.: A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput. Oper. Res. 87, 270–282 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gurobi Optimization, LLC.: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com

  8. Hans, E., Wullink, G., van Houdenhoven, M., Kazemier, G.: Robust surgery loading. Eur. J. Oper. Res. 185(3), 1038–1050 (2008)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs] (2014)

  10. Kroer, L.R.R., Foverskov, K., Vilhelmsen, C., Hansen, A.S., Larsen, J.: Planning and scheduling operating rooms for elective and emergency surgeries with uncertain duration. Oper. Res. Health Care 19, 107–119 (2018)

    Article  Google Scholar 

  11. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating room planning with elective and emergency demand for surgery. Eur. J. Oper. Res. 185(3), 1026–1037 (2008)

    Article  MathSciNet  Google Scholar 

  12. Marques, I., Captivo, M.E.: Different stakeholders’ perspectives for a surgical case assignment problem: deterministic and robust approaches. Eur. J. Oper. Res. 261(1), 260–278 (2017)

    Article  MathSciNet  Google Scholar 

  13. Min, D., Yih, Y.: Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur. J. Oper. Res. 206(3), 642–652 (2010)

    Article  MathSciNet  Google Scholar 

  14. Molina-Pariente, J.M., Hans, E.W., Framinan, J.M.: A stochastic approach for solving the operating room scheduling problem. Flex. Serv. Manuf. J. 30(1), 224–251 (2018)

    Article  Google Scholar 

  15. Neyshabouri, S., Berg, B.P.: Two-stage robust optimization approach to elective surgery and downstream capacity planning. Eur. J. Oper. Res. 260(1), 21–40 (2017)

    Article  MathSciNet  Google Scholar 

  16. van Oostrum, J.M., Van Houdenhoven, M., Hurink, J.L., Hans, E.W., Wullink, G., Kazemier, G.: A master surgical scheduling approach for cyclic scheduling in operating room departments. OR Spectr. 30(2), 355–374 (2008)

    Article  MathSciNet  Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in PyTorch, October 2017

    Google Scholar 

  18. Riise, A., Mannino, C., Burke, E.K.: Modelling and solving generalised operational surgery scheduling problems. Comput. Oper. Res. 66, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  19. Samudra, M., Van Riet, C., Demeulemeester, E., Cardoen, B., Vansteenkiste, N., Rademakers, F.E.: Scheduling operating rooms: achievements, challenges and pitfalls. J. Sched. 19(5), 493–525 (2016)

    Article  MathSciNet  Google Scholar 

  20. Spangler, W.E., Strum, D.P., Vargas, L.G., May, J.H.: Estimating procedure times for surgeries by determining location parameters for the Lognormal model. Health Care Manage. Sci. 7(2), 97–104 (2004)

    Article  Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author would like to acknowledge the National University Hospital of Iceland for providing data, insights and support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Philip Runarsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Runarsson, T.P. (2019). Approximating Probabilistic Constraints for Surgery Scheduling Using Neural Networks. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics