iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-34339-2_16
Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings | SpringerLink
Skip to main content

Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11879))

  • 1204 Accesses

Abstract

In AsiaCrypt 2017, Galbraith-Petit-Silva proposed a digital signature scheme based on the problem of computing the endomorphism ring of a supersingular elliptic curve. This problem is more standard than that of the De Feo-Jao-Plût SIDH scheme, since it lacks the auxiliary points which lead to the adaptive active attack of Galbraith-Petit-Shani-Ti. The GPS signature scheme applies the Fiat-Shamir or Unruh transformation to the raw identification protocol obtained from the endomorphism ring problem, and makes use of the Kohel-Lauter-Petit-Tignol quaternion isogeny path algorithm to find a new ideal. However, the GPS signature scheme is not very practical. In this paper, we take a first step towards quantifying the efficiency of the GPS signature scheme. We propose some improvements in the underlying algorithms for the GPS scheme, along with a new method which trades off key size for signature size to decrease the signature size from around 11 kB to 1 kB at the 128-bit security level by using multi-bit challenges. We also provide a concrete implementation of the GPS signature scheme using Sage and CoCalc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-Henríquez, F.: On the cost of computing isogenies between supersingular elliptic curves. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_15

    Chapter  Google Scholar 

  2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, New York, NY, USA, pp. 390–399. ACM (2006)

    Google Scholar 

  3. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from expander graphs. J. Cryptology 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  4. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical cryptanalysis of the computational supersingular isogeny problem. Cryptology ePrint Archive, Report 2019/298 (2019). https://eprint.iacr.org/2019/298

  5. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291

  6. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26

    Chapter  Google Scholar 

  7. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_11

    Chapter  Google Scholar 

  8. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptology 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_3

    Chapter  Google Scholar 

  10. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_1

    Chapter  Google Scholar 

  11. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

    Article  MathSciNet  Google Scholar 

  12. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  13. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis, University of California, Berkeley, (1996)

    Google Scholar 

  14. Kohel, D., Lauter, K.E., Petit, C., Tignol, J.-P.: On the quaternion \(\ell \)-isogeny path problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

    Google Scholar 

  15. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  16. Petit, C., Smith, S.: An improvement to the quaternion analogue of the \(l\)-isogeny path problem. In: Proceedings of MATHCRYPT 2018 (2018)

    Google Scholar 

  17. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian University of Science and Technology (2012)

    Google Scholar 

  18. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.5) (2019). https://www.sagemath.org

  19. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B 273, A238–A241 (1971)

    MATH  Google Scholar 

  20. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_9

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their detailed reviews and helpful comments. This work is supported by the National Natural Science Foundation of China (No. 61872442, No. 61502487) and the National Cryptography Development Fund (No. MMJJ20180216), as well as NSERC, CryptoWorks21, Public Works and Government Services Canada, Canada First Research Excellence Fund, and the Royal Bank of Canada. Furthermore, Xiu Xu acknowledges the scholarship provided by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X. et al. (2019). Improved Digital Signatures Based on Elliptic Curve Endomorphism Rings. In: Heng, SH., Lopez, J. (eds) Information Security Practice and Experience. ISPEC 2019. Lecture Notes in Computer Science(), vol 11879. Springer, Cham. https://doi.org/10.1007/978-3-030-34339-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34339-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34338-5

  • Online ISBN: 978-3-030-34339-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics