iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-33742-1_12
Dynamic Data Management for Machine Learning in Embedded Systems: A Case Study | SpringerLink
Skip to main content

Dynamic Data Management for Machine Learning in Embedded Systems: A Case Study

  • Conference paper
  • First Online:
Software Business (ICSOB 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 370))

Included in the following conference series:

Abstract

Dynamic data and continuously evolving sets of records are essential for a wide variety of today’s data management applications. Such applications range from large, social, content-driven Internet applications, to highly focused data processing verticals like data intensive science, telecommunications and intelligence applications. However, the dynamic and multimodal nature of data makes it challenging to transform it into machine-readable and machine-interpretable forms. In this paper, we report on an action research study that we conducted in collaboration with a multinational company in the embedded systems domain. In our study, and in the context of a real-world industrial application of dynamic data management, we provide insights to data science community and research to guide discussions and future research into dynamic data management in embedded systems. Our study identifies the key challenges in the phases of data collection, data storage and data cleaning that can significantly impact the overall performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86

    Chapter  Google Scholar 

  2. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle challenges in production machine learning: a survey. SIGMOD Record 47, 17–28 (2018)

    Article  Google Scholar 

  3. Kennedy, O., Ahmad, Y., Koch, C.: DBToaster: agile views for a dynamic data management system. In: CIDR 2011 - 5th Biennial Conference on Innovative Data Systems Research, Conference Proceedings, pp. 284–295 (2011)

    Google Scholar 

  4. Tegen, A., Davidsson, P., Mihailescu, R.C., Persson, J.A.: Collaborative sensing with interactive learning using dynamic intelligent virtual sensors. Sensors (Basel, Switzerland) 19(3), 477 (2019). https://doi.org/10.3390/s19030477

    Article  Google Scholar 

  5. Charles, H., Bellarnyz, R., Ericksonz, T., Burnett, M.: Trials and tribulations of developers of intelligent systems: a field study, pp. 162–170 (2016). https://doi.org/10.1109/vlhcc.2016.7739680

  6. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data management challenges in production machine learning. pp. 1723–1726 (2017). https://doi.org/10.1145/3035918.3054782

  7. Arpteg, A., Raj, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Data Management Challenges of Deep Learning, pp. 50–59 (2019). https://doi.org/10.1109/seaa.2019.00018

  8. Kumar, A., Boehm, M., Yang, J.: Data Management in Machine Learning: Challenges, Techniques, and Systems, pp. 1717–1722 (2017). https://doi.org/10.1145/3035918.3054775

  9. Delaye, E., Sirasao, A., Dudha, C., Das, S.: Deep learning challenges and solutions with Xilinx FPGAs, pp. 908–913 (2017). https://doi.org/10.1109/iccad.2017.8203877

  10. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H., Crnkovic, I.: A Hilltironomy of Software Engineering Challenges for Machine Learning Systems: An Empirical Investigation (2019). https://doi.org/10.1007/978-3-030-19034-7_14

  11. Zhou, L., Pan, S., Wang, J., Vasilakos, A.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017). https://doi.org/10.1016/j.neucom.2017.01.026

    Article  Google Scholar 

  12. Chu, X., Ilyas, I., Krishnan, S., Wang, J.: Data Cleaning: Overview and Emerging Challenges, pp. 2201–2206 (2016). https://doi.org/10.1145/2882903.2912574

  13. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progress Artif. Intell. 5, 221–232 (2016)

    Article  Google Scholar 

  14. Ahuja, S., Angra, S.: Machine learning and its Applications: A Review (2017). https://doi.org/10.1109/icbdaci.2017.8070809

  15. Hedgebeth, D.: Data-driven decision making for the enterprise: an overview of business intelligence applications. VINE 37(4), 414–420 (2007)

    Article  Google Scholar 

  16. Maxwell, J.A.: Qualitative Research Design: An interactive approach, 2nd edn. SAGE Publications, Thousands Oaks (2005)

    Google Scholar 

  17. Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F.: Guide to Intelligent Data Analysis. TCS. Springer, London (2010). https://doi.org/10.1007/978-1-84882-260-3

    Book  MATH  Google Scholar 

  18. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the 28th International Conference on Software Engineering (ICSE 2006), ACM, New York, NY, USA, pp. 33–42 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamza Ouhaichi , Helena Holmström Olsson or Jan Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouhaichi, H., Olsson, H.H., Bosch, J. (2019). Dynamic Data Management for Machine Learning in Embedded Systems: A Case Study. In: Hyrynsalmi, S., Suoranta, M., Nguyen-Duc, A., Tyrväinen, P., Abrahamsson, P. (eds) Software Business. ICSOB 2019. Lecture Notes in Business Information Processing, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-030-33742-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33742-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33741-4

  • Online ISBN: 978-3-030-33742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics