iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-33506-9_67
Decentralized Mechanism for Hiring the Smart Autonomous Vehicles Using Blockchain | SpringerLink
Skip to main content

Decentralized Mechanism for Hiring the Smart Autonomous Vehicles Using Blockchain

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2019)

Abstract

Nowadays, technologies like Autonomous Vehicles (AVs) are influencing the ways of our traveling. This paper inspects closely the development of a decentralized blockchain-based mechanism for providing secure, reliable and real-time availability of AVs for the customers who want to do the ride. The AVs have many advanced control systems and sensors to detect a number of hurdles (unsafe design of vehicles, negligence of civilians, etc.) in the environment. Blockchain is a decentralized temper proof business protocol used to facilitate the users with transparent, reliable, secure and cost-effective solutions. The consensus mechanisms are used in blockchain for validation purposes. This paper uses the Proof of Work consensus algorithm for the validation of Demand Response (DR) events. It provides the mechanism for real-time monitoring and real-time supervision to the ride of the end-user. Furthermore, it briefly specifies that the AVs working with blockchain mechanisms provides real-time traffic information to the end-user. The blockchain-based mechanism provides secure services to the end-user. It also provides the mechanism of Peer to Peer (P2P) car-sharing that removes the need for any bank or any reliable authority. The proposed system is proved in the Ethereum environment by DR events in the network. The simulations portray that our system is much cost-effective, efficient and reliable to meet the demands of customers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma, P.K., Moon, S.Y., Park, J.H.: Block-VN: a distributed blockchain based vehicular network architecture in smart City. JIPS 13(1), 184–195 (2017)

    Google Scholar 

  2. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A: Policy Pract. 77, 167–181 (2015)

    Google Scholar 

  3. Burns, L., Jordan, W., Scarborough, B.: Transforming Personal Mobility. The Earth Institute, Columbia University, New York (2013, accepted)

    Google Scholar 

  4. Howard, D., Dai, D.: Public perceptions of self-driving cars: the case of Berkeley, California. In: Transportation Research Board 93rd Annual Meeting, vol. 14, no. 4502, pp. 1–16 (2014)

    Google Scholar 

  5. Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola, O.A.: Autonomous vehicle technology: a guide for policymakers. Rand Corporation (2014, accepted)

    Google Scholar 

  6. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008, accepted)

    Google Scholar 

  7. Kpmg, C., et al.: Self-driving Cars: The Next Revolution. Kpmg, Seattle (2012, accepted)

    Google Scholar 

  8. Iqbal, R., Butt, T.A., Afzaal, M., Salah, K.: Trust management in social Internet of vehicles: factors, challenges, blockchain, and fog solutions. Int. J. Distrib. Sens. Netw. 15(1), 1550147719825820 (2019)

    Article  Google Scholar 

  9. García-Magariño, I., Lacuesta, R., Rajarajan, M., Lloret, J.: Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain. Ad Hoc Netw. 86, 72–82 (2019)

    Article  Google Scholar 

  10. Peng, Z., Gao, S., Li, Z., Xiao, B., Qian, Y.: Vehicle safety improvement through deep learning and mobile sensing. IEEE Netw. 32(4), 28–33 (2018)

    Article  Google Scholar 

  11. Sharma, V.: An energy-efficient transaction model for the blockchain-enabled internet of vehicles (IoV). IEEE Commun. Lett. 23(2), 246–249 (2018)

    Article  Google Scholar 

  12. Kang, J., Yu, R., Huang, X., Wu, M., Maharjan, S., Xie, S., Zhang, Y.: Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J. 5, 1389–1399 (2018)

    Google Scholar 

  13. Rahmadika, S., Ramdania, D.R., Harika, M.: Security analysis on the decentralized energy trading system using blockchain technology. Jurnal Online Informatika 3(1), 44–47 (2018)

    Article  Google Scholar 

  14. Xu, Y., Wang, G., Yang, J., Ren, J., Zhang, Y., Zhang, C.: Towards secure network computing services for lightweight clients using blockchain. In: Wireless Communications and Mobile Computing (2018, accepted)

    Google Scholar 

  15. Lin, J., Shen, Z., Miao, C., Liu, S.: Using blockchain to build trusted LoRaWAN sharing server. Int. J. Crowd Sci. 1(3), 270–280 (2017)

    Article  Google Scholar 

  16. Lin, D., Tang, Y.: Blockchain consensus based user access strategies in D2D networks for data-intensive applications. IEEE Access 6, 72683–72690 (2018)

    Article  Google Scholar 

  17. Zhang, Y., Wen, J.: The IoT electric business model: using blockchain technology for the internet of things. Peer-to-Peer Netw. Appl. 10(4), 983–994 (2017)

    Article  Google Scholar 

  18. Xu, C., Wang, K., Li, P., Guo, S., Luo, J., Ye, B., Guo, M.: Making big data open in edges: a resource-efficient blockchain-based approach. IEEE Trans. Parallel Distrib. Syst. 30(4), 870–882 (2018)

    Article  Google Scholar 

  19. Novo, O.: Scalable access management in IoT using blockchain: a performance evaluation. IEEE Internet Things J. (2018, accepted)

    Google Scholar 

  20. Jiang, T., Fang, H., Wang, H.: Blockchain-based internet of vehicles: distributed network architecture and performance analysis. IEEE Internet Things J. 5, 4100–4108 (2018)

    Google Scholar 

  21. Singh, M., Kim, S.: Branch based blockchain technology in intelligent vehicle. Comput. Netw. 145, 219–231 (2018)

    Article  Google Scholar 

  22. Yang, Z., Yang, K., Lei, L., Zheng, K., Leung, V.C.M.: Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J. 6(2), 1495–1505 (2018)

    Article  Google Scholar 

  23. Dai, M., Zhang, S., Wang, H., Jin, S.: A low storage room requirement framework for distributed ledger in blockchain. IEEE Access 6, 22970–22975 (2018)

    Article  Google Scholar 

  24. Zhang, G., Li, T., Li, Y., Hui, P., Jin, D.: Blockchain-based data sharing system for AI-powered network operations. J. Commun. Inf. Netw. 3(3), 1–8 (2018)

    Article  Google Scholar 

  25. Samuel, O., Nadeem Javaid, M.A., Ahmed, Z., Imran, M., Guizani, M.: A blockchain model for fair data sharing in deregulated smart grids. In: IEEE Global Communications Conference (GLOBCOM 2019) (2019)

    Google Scholar 

  26. Rehman, M., Javaid, N., Awais, M., Imran, M., Naseer, N.: Cloud based secure service providing for IoTs using blockchain. In: IEEE Global Communications Conference (GLOBCOM 2019) (2019)

    Google Scholar 

  27. Mateen, A., Javaid, N., Iqbal, S.: Towards energy efficient routing in blockchain based underwater WSNs via recovering the void holes. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  28. Naz, M., Javaid, N., Iqbal, S.: Research based data rights management using blockchain over ethereum network. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  29. Javaid, A., Javaid, N., Imran, M.: Ensuring analyzing and monetization of data using data science and blockchain in loT devices. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  30. Syeda, H., Kazmi, Z., Javaid, N., Imran, M.: Towards energy efficiency and trustfulness in complex networks using data science techniques and blockchain. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  31. Zahid, M., Javaid, N., Rasheed, M.B.: Balancing electricity demand and supply in smart grids using blockchain. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  32. Noshad, Z., Javaid, N., Imran, M.: Analyzing and securing data using data science and blockchain in smart networks. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  33. Ali, I., Javaid, N., Iqbal, S.: An incentive mechanism for secure service provisioning for lightweight clients based on blockchain. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

  34. ul Hussen Khan, R.J., Javaid, N., Iqbal, S.: Blockchain based node recovery scheme for wireless sensor networks. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan, July 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abubaker, Z. et al. (2020). Decentralized Mechanism for Hiring the Smart Autonomous Vehicles Using Blockchain. In: Barolli, L., Hellinckx, P., Enokido, T. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2019. Lecture Notes in Networks and Systems, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-33506-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33506-9_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33505-2

  • Online ISBN: 978-3-030-33506-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics