iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-32304-2_16
Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants | SpringerLink
Skip to main content

Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants

  • Conference paper
  • First Online:
Static Analysis (SAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11822))

Included in the following conference series:

Abstract

We present a new learning algorithm Sorcar to synthesize conjunctive inductive invariants for proving that a program satisfies its assertions. The salient property of this algorithm is that it is property-driven, and for a fixed finite set of n predicates, guarantees convergence in 2n rounds, taking only polynomial time in each round. We implement and evaluate the algorithm and show that its performance is favorable to the existing Houdini algorithm (which is not property-driven) for a class of benchmarks that prove data race freedom of GPU programs and another class that synthesizes invariants for proving separation logic properties for heap manipulating programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Houdini and Sorcar were both magicians!

  2. 2.

    By abuse of notation, we write \(c \models \alpha \) (\(c \not \models \alpha \)) to denote that c satisfies (violates) the formula \(\alpha \) even if \(\alpha \) contains predicates that do not belong to \(\mathcal P\).

  3. 3.

    Note that the corresponding decision problem is NP-complete.

  4. 4.

    The sources of Sorcar are publicly available at https://github.com/horn-ice/sorcar.

References

  1. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engineering, NATO Science for Peace and Security Series, D: Information and Communication Security, vol. 40, pp. 1–25. IOS Press (2015)

    Google Scholar 

  2. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM. Commun. ACM 54(7), 68–76 (2011)

    Article  Google Scholar 

  3. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Snowbird, Utah, USA, 20–22 June 2001, pp. 203–213. ACM (2001)

    Google Scholar 

  4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

    Chapter  Google Scholar 

  5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  6. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a verifier for GPU kernels. In: Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, 21–25 October 2012, pp. 113–132. ACM (2012)

    Google Scholar 

  7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  8. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_20

    Chapter  Google Scholar 

  9. Chong, N., Donaldson, A.F., Kelly, P.H.J., Ketema, J., Qadeer, S.: Barrier invariants: a shared state abstraction for the analysis of data-dependent GPU kernels. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, 26–31 October 2013, pp. 605–622. ACM (2013)

    Google Scholar 

  10. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  11. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2

    Chapter  Google Scholar 

  12. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_39

    Chapter  Google Scholar 

  13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, pp. 238–252. ACM (1977)

    Google Scholar 

  14. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive inference. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, 26–31 October 2013, pp. 443–456. ACM (2013)

    Google Scholar 

  15. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant program invariants. In: Proceedings of the 22nd International Conference on on Software Engineering, ICSE 2000, Limerick Ireland, 4–11 June 2000, pp. 449–458. ACM (2000)

    Google Scholar 

  16. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learning for synthesizing invariants and contracts. PACMPL 2(OOPSLA), 131:1–131:25 (2018)

    Article  Google Scholar 

  17. Fedyukovich, G., Kaufman, S.J., Bodík, R.: Sampling invariants from frequency distributions. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 100–107. IEEE (2017)

    Google Scholar 

  18. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6_29

    Chapter  Google Scholar 

  19. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quantified invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 813–829. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_57

    Chapter  Google Scholar 

  20. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_5

    Chapter  Google Scholar 

  21. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and implication counterexamples. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, pp. 499–512 (2016)

    Google Scholar 

  22. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from proof rules. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2012, Beijing, China, 11–16 June 2012, pp. 405–416. ACM (2012)

    Article  Google Scholar 

  23. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, 7–13 June 2008, pp. 281–292. ACM (2008)

    Google Scholar 

  24. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_48

    Chapter  Google Scholar 

  25. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972)

    Google Scholar 

  26. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Book  Google Scholar 

  27. Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. CoRR abs/1501.04725 (2015). http://arxiv.org/abs/1501.04725

  28. Lal, A., Qadeer, S.: Powering the static driver verifier using corral. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China, 16–22 November 2014, pp. 202–212. ACM (2014)

    Google Scholar 

  29. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_32

    Chapter  Google Scholar 

  30. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1987)

    Google Scholar 

  31. Löding, C., Madhusudan, P., Peña, L.: Foundations for natural proofs and quantifier instantiation. Proc. ACM Program. Lang. 2(POPL), 10 (2017)

    Article  Google Scholar 

  32. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1

    Chapter  Google Scholar 

  33. Microsoft: Static driver verifier. https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier. Accessed 26 Apr 2019

  34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  35. Neider, D., Garg, P., Madhusudan, P., Saha, S., Park, D.: Invariant synthesis for incomplete verification engines. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 232–250. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_13

    Chapter  Google Scholar 

  36. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software property checking via static analysis and testing. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_17

    Chapter  Google Scholar 

  37. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation in C using separation logic. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014, pp. 440–451. ACM (2014)

    Google Scholar 

  38. Qiu, X., Garg, P., Ştefănescu, A., Madhusudan, P.: Natural proofs for structure, data, and separation. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013, pp. 231–242. ACM, New York (2013). https://doi.org/10.1145/2491956.2462169

  39. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, 7–13 June 2008, pp. 159–169. ACM (2008)

    Google Scholar 

  40. Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 88–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_6

    Chapter  Google Scholar 

  41. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_31

    Chapter  Google Scholar 

  42. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learning geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 388–411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9_21

    Chapter  Google Scholar 

  43. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_11

    Chapter  Google Scholar 

  44. Solar-Lezama, A.: Program Synthesis by Sketching. Ph.D. thesis, University of California at Berkeley (2008)

    Google Scholar 

  45. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketching for finite programs. In: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, 21–25 October 2006, pp. 404–415. ACM (2006)

    Google Scholar 

  46. Thakur, A., Lal, A., Lim, J., Reps, T.: Posthat and all that: automating abstract interpretation. Electron. Notes Theor. Comput. Sci. 311, 15–32 (2015)

    Article  MathSciNet  Google Scholar 

  47. Vizel, Y., Gurfinkel, A., Shoham, S., Malik, S.: IC3 - flipping the E in ICE. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 521–538. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_28

    Chapter  Google Scholar 

  48. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, 18–22 June 2018, pp. 707–721. ACM (2018)

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their many valuable suggestions that helped improve this paper. This material is based upon work supported by the National Science Foundation under Grant No. 1527395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Neider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neider, D., Saha, S., Garg, P., Madhusudan, P. (2019). Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants. In: Chang, BY. (eds) Static Analysis. SAS 2019. Lecture Notes in Computer Science(), vol 11822. Springer, Cham. https://doi.org/10.1007/978-3-030-32304-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32304-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32303-5

  • Online ISBN: 978-3-030-32304-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics