iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-32047-8_10
Explainable Similarity of Datasets Using Knowledge Graph | SpringerLink
Skip to main content

Explainable Similarity of Datasets Using Knowledge Graph

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11807))

Included in the following conference series:

Abstract

There is a large quantity of datasets available as Open Data on the Web. However, it is challenging for users to find datasets relevant to their needs, even though the datasets are registered in catalogs such as the European Data Portal. This is because the available metadata such as keywords or textual description is not descriptive enough. At the same time, datasets exist in various types of contexts not expressed in the metadata. These may include information about the dataset publisher, the legislation related to dataset publication, language and cultural specifics, etc. In this paper we introduce a similarity model for matching datasets. The model assumes an ontology/knowledge graph, such as Wikidata.org, that serves as a graph-based context to which individual datasets are mapped based on their metadata. A similarity of the datasets is then computed as an aggregation over paths among nodes in the graph. The proposed similarity aims at addressing the problem of explainability of similarity, i.e., providing the user a structured explanation of the match which, in a broader sense, is nowadays a hot topic in the field of artificial intelligence.

This research has been supported by Czech Science Foundation (GAČR) project Nr. 19-01641S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    E.g., European Data Portal https://www.europeandataportal.eu.

  2. 2.

    https://data.gov.cz/zdroj/datové-sady/http—opendata.praha.eu-api-3-action-package_show-id-praha8-sportoviste.

  3. 3.

    https://www.opendatani.gov.uk/dataset/active-places-ni-sports-facilities-database.

  4. 4.

    https://joinup.ec.europa.eu/release/dcat-ap/121.

  5. 5.

    https://wikidata.org.

  6. 6.

    https://dumps.wikimedia.org/other/wikidata/20181217.json.gz.

  7. 7.

    https://www.wikidata.org/wiki/Property:P279.

  8. 8.

    https://www.wikidata.org/wiki/Property:P31.

  9. 9.

    https://data.gov.cz/zdroj/datové-sady/Bohumin/3384768.

  10. 10.

    https://data.gov.cz/zdroj/datové-sady/https—opendata.ostrava.cz-api-3-action-package_show-id-program-narodniho-divadla-moravskoslezskeho.

References

  1. Klímek, J.: DCAT-AP representation of Czech National Open Data Catalog and its impact. J. Web Semant. 55, 69–85 (2019). https://doi.org/10.1016/j.websem.2018.11.001

    Article  Google Scholar 

  2. Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P.: Efficient graph-based document similarity. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 334–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_21

    Chapter  Google Scholar 

  3. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015). https://doi.org/10.1109/TKDE.2014.2327028

    Article  Google Scholar 

  4. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph clustering. In: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano, L., Fuxman, A. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012, pp. 505–516. ACM (2012). https://doi.org/10.1145/2213836.2213894

  5. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB 2(1), 718–729 (2009). https://doi.org/10.14778/1687627.1687709

    Article  Google Scholar 

  6. Zhu, G., Iglesias, C.A.: Computing semantic similarity of concepts in knowledge graphs. IEEE Trans. Knowl. Data Eng. 29(1), 72–85 (2017). https://doi.org/10.1109/TKDE.2016.2610428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Skopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Škoda, P., Klímek, J., Nečaský, M., Skopal, T. (2019). Explainable Similarity of Datasets Using Knowledge Graph. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32047-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32046-1

  • Online ISBN: 978-3-030-32047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics