Abstract
There is a large quantity of datasets available as Open Data on the Web. However, it is challenging for users to find datasets relevant to their needs, even though the datasets are registered in catalogs such as the European Data Portal. This is because the available metadata such as keywords or textual description is not descriptive enough. At the same time, datasets exist in various types of contexts not expressed in the metadata. These may include information about the dataset publisher, the legislation related to dataset publication, language and cultural specifics, etc. In this paper we introduce a similarity model for matching datasets. The model assumes an ontology/knowledge graph, such as Wikidata.org, that serves as a graph-based context to which individual datasets are mapped based on their metadata. A similarity of the datasets is then computed as an aggregation over paths among nodes in the graph. The proposed similarity aims at addressing the problem of explainability of similarity, i.e., providing the user a structured explanation of the match which, in a broader sense, is nowadays a hot topic in the field of artificial intelligence.
This research has been supported by Czech Science Foundation (GAČR) project Nr. 19-01641S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
E.g., European Data Portal https://www.europeandataportal.eu.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Klímek, J.: DCAT-AP representation of Czech National Open Data Catalog and its impact. J. Web Semant. 55, 69–85 (2019). https://doi.org/10.1016/j.websem.2018.11.001
Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P.: Efficient graph-based document similarity. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 334–349. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_21
Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015). https://doi.org/10.1109/TKDE.2014.2327028
Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph clustering. In: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano, L., Fuxman, A. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012, pp. 505–516. ACM (2012). https://doi.org/10.1145/2213836.2213894
Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB 2(1), 718–729 (2009). https://doi.org/10.14778/1687627.1687709
Zhu, G., Iglesias, C.A.: Computing semantic similarity of concepts in knowledge graphs. IEEE Trans. Knowl. Data Eng. 29(1), 72–85 (2017). https://doi.org/10.1109/TKDE.2016.2610428
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Škoda, P., Klímek, J., Nečaský, M., Skopal, T. (2019). Explainable Similarity of Datasets Using Knowledge Graph. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-32047-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32046-1
Online ISBN: 978-3-030-32047-8
eBook Packages: Computer ScienceComputer Science (R0)