iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-30942-8_27
Concolic Testing Heap-Manipulating Programs | SpringerLink
Skip to main content

Concolic Testing Heap-Manipulating Programs

  • Conference paper
  • First Online:
Formal Methods – The Next 30 Years (FM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11800))

Included in the following conference series:

Abstract

Concolic testing is a test generation technique which works effectively by integrating random testing generation and symbolic execution. Existing concolic testing engines focus on numeric programs. Heap-manipulating programs make extensive use of complex heap objects like trees and lists. Testing such programs is challenging due to multiple reasons. Firstly, test inputs for such programs are required to satisfy non-trivial constraints which must be specified precisely. Secondly, precisely encoding and solving path conditions in such programs are challenging and often expensive. In this work, we propose the first concolic testing engine called CSF for heap-manipulating programs based on separation logic. CSF effectively combines specification-based testing and concolic execution for test input generation. It is evaluated on a set of challenging heap-manipulating programs. The results show that CSF generates valid test inputs with high coverage efficiently. Furthermore, we show that CSF can be potentially used in combination with precondition inference tools to reduce the user effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When BBE runs, we count the structures that the repOK method returns \(\mathtt true\) as valid ones, and the structures that the repOK method returns \(\mathtt false\) as invalid ones.

  2. 2.

    and it is unclear to us whether HEX is capable to specify them.

References

  1. A Fuzzer and a Symbolic Executor Walk into a Cloud. https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/

  2. Facebook Infer. https://fbinfer.com/

  3. GanttProject. https://github.com/bardsoftware/ganttproject

  4. JaCoCo. https://www.eclemma.org/jacoco/

  5. PLEXIL. http://plexil.sourceforge.net

  6. PLEXIL5. https://github.com/nasa/PLEXIL5

  7. SIR. http://sir.unl.edu/portal/index.php

  8. Sireum. https://code.google.com/archive/p/sireum/downloads

  9. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java predicates. In: Frankl, P.G. (ed.) ISSTA 2002, pp. 123–133. ACM (2002). https://doi.org/10.1145/566172.566191

  10. Braione, P., Denaro, G., Mattavelli, A., Pezzè, M.: Combining symbolic execution and search-based testing for programs with complex heap inputs. In: Bultan, T., Sen, K. (eds.) ISSTA 2017, pp. 90–101. ACM (2017). https://doi.org/10.1145/3092703.3092715

  11. Braione, P., Denaro, G., Pezzè, M.: Symbolic execution of programs with heap inputs. In: Nitto, E.D., Harman, M., Heymans, P. (eds.) FSE 2015, pp. 602–613. ACM (2015). https://doi.org/10.1145/2786805.2786842

  12. Braione, P., Denaro, G., Pezzè, M.: JBSE: A symbolic executor for Java programs with complex heap inputs. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) FSE 2016, pp. 1018–1022. ACM (2016). https://doi.org/10.1145/2950290.2983940

  13. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by means of bi-abduction. JACM 58(6), 26:1–26:66 (2011). https://doi.org/10.1145/2049697.2049700

    Article  MathSciNet  MATH  Google Scholar 

  14. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012). https://doi.org/10.1016/j.scico.2010.07.004

    Article  MATH  Google Scholar 

  15. Deng, X., Lee, J., Robby: Bogor/Kiasan: a k-bounded symbolic execution for checking strong heap properties of open systems. In: ASE 2006, pp. 157–166. IEEE Computer Society (2006). https://doi.org/10.1109/ASE.2006.26

  16. Deng, X., Robby, Hatcliff, J.: Towards a case-optimal symbolic execution algorithm for analyzing strong properties of object-oriented programs. In: SEFM 2007. IEEE Computer Society (2007). https://doi.org/10.1109/SEFM.2007.43

  17. Dennis, G.D.: TSAFE : building a trusted computing base for air traffic control software. Master’s thesis, Massachusetts Institute of Technology, USA (2003)

    Google Scholar 

  18. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: Sarkar, V., Hall, M.W. (eds.) PLDI 2005, pp. 213–223. ACM (2005). https://doi.org/10.1145/1065010.1065036

  19. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security testing. Queue 10(1), 20:20–20:27 (2012). https://doi.org/10.1145/2090147.2094081

    Article  Google Scholar 

  20. Heimdahl, M.P.E., Rayadurgam, S., Visser, W., Devaraj, G., Gao, J.: Auto-generating test sequences using model checkers: a case study. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 42–59. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-6_4

    Chapter  Google Scholar 

  21. Hillery, B., Mercer, E., Rungta, N., Person, S.: Exact heap summaries for symbolic execution. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 206–225. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_10

    Chapter  Google Scholar 

  22. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test coverage and generation. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 327–341. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_23

    Chapter  MATH  Google Scholar 

  23. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: Hankin, C., Schmidt, D. (eds.) POPL 2001, pp. 14–26. ACM (2001). https://doi.org/10.1145/360204.375719

  24. Jayaraman, K., Harvison, D., Ganesh, V., Kiezun, A.: jFuzz: a concolic whitebox fuzzer for Java. In: Denney, E., Giannakopoulou, D., Pasareanu, C.S. (eds.) NFM 2009, pp. 121–125 (2009)

    Google Scholar 

  25. Khurshid, S., Pǎsǎreanu, C.S., Visser, W.: Generalized symbolic execution for model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_40

    Chapter  MATH  Google Scholar 

  26. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976). https://doi.org/10.1145/360248.360252

    Article  MathSciNet  MATH  Google Scholar 

  27. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_4

    Chapter  Google Scholar 

  28. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_21

    Chapter  Google Scholar 

  29. Le, Q.L., Sun, J., Qin, S.: Frame inference for inductive entailment proofs in separation logic. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 41–60. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_3

    Chapter  Google Scholar 

  30. Le, Q.L., Tatsuta, M., Sun, J., Chin, W.-N.: A decidable fragment in separation logic with inductive predicates and arithmetic. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 495–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_26

    Chapter  Google Scholar 

  31. Le, X.D., Le, Q.L., Lo, D., Le Goues, C.: Enhancing automated program repair with deductive verification. In: ICSME 2016, pp. 428–432. IEEE Computer Society (2016). https://doi.org/10.1109/ICSME.2016.66

  32. Luckow, K., et al.: JDart: a dynamic symbolic analysis framework. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_26

    Chapter  Google Scholar 

  33. Marinescu, P.D., Cadar, C.: Make test-zesti: a symbolic execution solution for improving regression testing. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) ICSE 2012, pp. 716–726. IEEE Computer Society (2012). https://doi.org/10.1109/ICSE.2012.6227146

  34. Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of Java programs. In: ASE 2001, pp. 22–31. IEEE Computer Society (2001). https://doi.org/10.1109/ASE.2001.989787

  35. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Enhancing symbolic execution of heap-based programs with separation logic for test input generation. In: ATVA 2019. To appear

    Google Scholar 

  36. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Testing heap-based programs with Java StarFinder. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.) ICSE 2018, pp. 268–269. ACM (2018). https://doi.org/10.1145/3183440.3194964

  37. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_54

    Chapter  Google Scholar 

  38. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS 2002, pp. 55–74. IEEE Computer Society (2002). https://doi.org/10.1109/LICS.2002.1029817

  39. Santos, J.F., Maksimović, P., Sampaio, G., Gardner, P.: JaVerT 2.0: compositional symbolic execution for JavaScript. PACMPL 3(POPL), 66:1–66:31 (2019). https://doi.org/10.1145/3290379

    Article  Google Scholar 

  40. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Wermelinger, M., Gall, H.C. (eds.) FSE 2005, pp. 263–272. ACM (2005). https://doi.org/10.1145/1081706.1081750

  41. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execution. In: NDSS 2016. The Internet Society (2016)

    Google Scholar 

  42. Tanno, H., Zhang, X., Hoshino, T., Sen, K.: TesMa and CATG: automated test generation tools for models of enterprise applications. In: Bertolino, A., Canfora, G., Elbaum, S.G. (eds.) ICSE 2015, pp. 717–720. IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.2015.231

  43. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9_10

    Chapter  Google Scholar 

  44. Vanoverberghe, D., Tillmann, N., Piessens, F.: Test input generation for programs with pointers. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 277–291. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_25

    Chapter  Google Scholar 

  45. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with java PathFinder. In: Avrunin, G.S., Rothermel, G. (eds.) ISSTA 2004, pp. 97–107. ACM (2004). https://doi.org/10.1145/1007512.1007526

  46. Wang, X., Sun, J., Chen, Z., Zhang, P., Wang, J., Lin, Y.: Towards optimal concolic testing. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.) ICSE 2018, pp. 291–302 (2018). https://doi.org/10.1145/3180155.3180177

  47. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : a practical concolic execution engine tailored for hybrid fuzzing. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018, pp. 745–761. USENIX Association (2018)

    Google Scholar 

Download references

Acknowledgments

This research is supported by MOE research grant MOE2016-T2-2-123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long H. Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, L.H., Le, Q.L., Phan, QS., Sun, J. (2019). Concolic Testing Heap-Manipulating Programs. In: ter Beek, M., McIver, A., Oliveira, J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in Computer Science(), vol 11800. Springer, Cham. https://doi.org/10.1007/978-3-030-30942-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30942-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30941-1

  • Online ISBN: 978-3-030-30942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics