Abstract
Genetic algorithms (GAs) are powerful tools for solving complex optimization problems, usually using a haploid representation. In the past decades, there has been a growing interest concerning the diploid genetic algorithms. Even though this area seems to be attractive, it lacks wider coverage and research in the Evolutionary Computation community. The scope of this paper is to provide some reasons why this situation happens and in order to fulfill this aim, we present experimental results using a conventional haploid GA and a developed diploid GA tested on some major benchmark functions used for performance evaluation of genetic algorithms. The obtained results show the superiority of the diploid GA over the conventional haploid GA in the case of the considered benchmark functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Basic Algorithms and Operators, 1st edn. IOP Publishing Ltd., Bristol (1999)
Bhasin, H., Behal, G., Aggarwal, N., Saini, R.K., Choudhary, S.: On the applicability of diploid genetic algorithms in dynamic environments. Soft. Comput. 20(9), 3403–3410 (2016). https://doi.org/10.1007/s00500-015-1803-5
Bull, L.: Haploid-diploid evolutionary algorithms: the Baldwin effect and recombination nature’s way. In: AISB (2017)
Digalakis, J., Margaritis, K.: On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77(4), 481–506 (2001). https://doi.org/10.1080/00207160108805080
Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proceedings of Second International Conference on Genetic Algorithms and Their Application, pp. 59–68 (1987)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975). Second edition 1992
Liekens, A., Eikelder, H., Hilbers, P.: Modeling and simulating diploid simple genetic algorithms. In: Proceedings Foundations of Genetic Algorithms VII, pp. 151–168. FOGA VII (2003)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)
Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann Publishers Inc., San Francisco (1995). http://dl.acm.org/citation.cfm?id=645514.657904
Pop, P., Oliviu, M., Sabo, C.: A hybrid diploid genetic based algorithm for solving the generalized traveling salesman problem. In: MartÃnez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 149–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_13
Pop, P., Matei, O., Sabo, C., Petrovan, A.: A two-level solution approach for solving the generalized minimum spanning tree problem. Eur. J. Oper. Res. 265(2), 478–487 (2018)
Pop, P., Matei, O., Pintea, C.: A two-level diploid genetic based algorithm for solving the family traveling salesman problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 340–346. ACM, New York (2018). https://doi.org/10.1145/3205455.3205545
Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005). https://doi.org/10.1007/s00500-004-0422-3
Yukiko, Y., Nobue, A.: A diploid genetic algorithm for preserving population diversity — Pseudo-Meiosis GA. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 36–45. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_248
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Petrovan, A., Pop-Sitar, P., Matei, O. (2019). Haploid Versus Diploid Genetic Algorithms. A Comparative Study. In: Pérez GarcÃa, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado RodrÃguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)