iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-29859-3_17
Haploid Versus Diploid Genetic Algorithms. A Comparative Study | SpringerLink
Skip to main content

Haploid Versus Diploid Genetic Algorithms. A Comparative Study

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

Abstract

Genetic algorithms (GAs) are powerful tools for solving complex optimization problems, usually using a haploid representation. In the past decades, there has been a growing interest concerning the diploid genetic algorithms. Even though this area seems to be attractive, it lacks wider coverage and research in the Evolutionary Computation community. The scope of this paper is to provide some reasons why this situation happens and in order to fulfill this aim, we present experimental results using a conventional haploid GA and a developed diploid GA tested on some major benchmark functions used for performance evaluation of genetic algorithms. The obtained results show the superiority of the diploid GA over the conventional haploid GA in the case of the considered benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Basic Algorithms and Operators, 1st edn. IOP Publishing Ltd., Bristol (1999)

    Google Scholar 

  2. Bhasin, H., Behal, G., Aggarwal, N., Saini, R.K., Choudhary, S.: On the applicability of diploid genetic algorithms in dynamic environments. Soft. Comput. 20(9), 3403–3410 (2016). https://doi.org/10.1007/s00500-015-1803-5

    Article  Google Scholar 

  3. Bull, L.: Haploid-diploid evolutionary algorithms: the Baldwin effect and recombination nature’s way. In: AISB (2017)

    Google Scholar 

  4. Digalakis, J., Margaritis, K.: On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77(4), 481–506 (2001). https://doi.org/10.1080/00207160108805080

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proceedings of Second International Conference on Genetic Algorithms and Their Application, pp. 59–68 (1987)

    Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975). Second edition 1992

    Google Scholar 

  7. Liekens, A., Eikelder, H., Hilbers, P.: Modeling and simulating diploid simple genetic algorithms. In: Proceedings Foundations of Genetic Algorithms VII, pp. 151–168. FOGA VII (2003)

    Google Scholar 

  8. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  9. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann Publishers Inc., San Francisco (1995). http://dl.acm.org/citation.cfm?id=645514.657904

  10. Pop, P., Oliviu, M., Sabo, C.: A hybrid diploid genetic based algorithm for solving the generalized traveling salesman problem. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 149–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_13

    Chapter  Google Scholar 

  11. Pop, P., Matei, O., Sabo, C., Petrovan, A.: A two-level solution approach for solving the generalized minimum spanning tree problem. Eur. J. Oper. Res. 265(2), 478–487 (2018)

    Article  MathSciNet  Google Scholar 

  12. Pop, P., Matei, O., Pintea, C.: A two-level diploid genetic based algorithm for solving the family traveling salesman problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 340–346. ACM, New York (2018). https://doi.org/10.1145/3205455.3205545

  13. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005). https://doi.org/10.1007/s00500-004-0422-3

    Article  MATH  Google Scholar 

  14. Yukiko, Y., Nobue, A.: A diploid genetic algorithm for preserving population diversity — Pseudo-Meiosis GA. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 36–45. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_248

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Petrovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrovan, A., Pop-Sitar, P., Matei, O. (2019). Haploid Versus Diploid Genetic Algorithms. A Comparative Study. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics