iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-29551-6_70
Data and Knowledge: An Interdisciplinary Approach for Air Quality Forecast | SpringerLink
Skip to main content

Data and Knowledge: An Interdisciplinary Approach for Air Quality Forecast

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

Abstract

Air pollution has become a critical problem in rapidly developing countries. Prior domain knowledge combined with data mining offers new ideas for air quality prediction. In this paper, we propose an interdisciplinary approach for air quality forecast based on data mining and air mass trajectory analysis. The prediction model is composed of a temporal predictor based on local factors, a spatial predictor based on geographical factors, an air mass predictor tracking air pollutants transport corridors and an aggregator for final prediction. Experimental results based on real world data show that the cross-domain data mining method can significantly improve the prediction accuracy compared with other baselines, especially in the period of severe pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, B., et al.: Learning-based energy-efficient data collection by unmannedvehicles in smart cities. IEEE Trans. Industr. Inf. 14(4), 1666–1676 (2018)

    Article  Google Scholar 

  2. Feng, C., et al.: Estimate air quality based on mobile crowd sensing and big data. IEEE WoWMoM (2017)

    Google Scholar 

  3. Stadlober, E., et al.: Quality and performance of a PM10 daily forecasting model. Atmos. Environ. 42(6), 1098–1109 (2008)

    Article  Google Scholar 

  4. Gao, H., et al.: A survey of incentive mechanisms for participatory sensing. IEEE Commun. Surv. Tutorials (2017)

    Google Scholar 

  5. Djalalova, I., et al.: PM2.5 analog forecast and Kalman filter post-processing for the community multiscale air quality (CMAQ) model. Atmos. Environ. 108, 76–87 (2015)

    Article  Google Scholar 

  6. Chen, J., et al.: Smog disaster forecasting using social web data and physical sensor data. In: IEEE Big Data (2015)

    Google Scholar 

  7. Tang, J., et al.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Networks Learn. Syst. 27(4), 809–821 (2016)

    Article  MathSciNet  Google Scholar 

  8. Buehner, M.J., et al.: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Process. Geophys. 20(5), 669–682 (2013)

    Article  Google Scholar 

  9. Perez, P., et al.: An integrated neural network model for PM10 forecasting. Atmos. Environ. 40(16), 2845–2851 (2006)

    Article  Google Scholar 

  10. Kota, S.H., et al.: Evaluation of on-road vehicle CO and NO\(_{x}\) National Emission Inventories using an urban-scale source-oriented air quality model. Atmos. Environ. 82, 99–108 (2014)

    Article  Google Scholar 

  11. Chen, T., et al.: Xgboost: a scalable tree boosting system. In: ACM SIGKDD International Conference (2016)

    Google Scholar 

  12. Feng, X., et al.: Formation and dominant factors of haze pollution over Beijing and its peripheral areas in winter. Atmos. Pollut. Res. 5(3), 528–538 (2014)

    Article  Google Scholar 

  13. Morelli, X., et al.: Air pollution, health and social deprivation: a fine-scalerisk assessment. Environ. Res. 147, 59–70 (2016)

    Article  Google Scholar 

  14. Zheng, Y., et al.: U-air: When urban air quality inference meets big data. In: ACM SIGKDD International Conference (2013)

    Google Scholar 

  15. Zheng, Y., et al.: Forecasting fine-grained air quality based on big data. In: ACM SIGKDD International Conference (2015)

    Google Scholar 

  16. Qi, Z., et al.: Deep air learning: Interpolation, prediction, and feature analysis of air quality. IEEE Trans. Knowl. Data Eng. 30(12), 2285–2297 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No.61602051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, C., Wang, W., Tian, Y., Gong, X., Que, X. (2019). Data and Knowledge: An Interdisciplinary Approach for Air Quality Forecast. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics