Abstract
Two types of soft bending actuators with the rib structure and the pleated structure are introduced in this study. We illustrate the advantages of the two types of actuators, as well as their applicability to different tasks. We build a finite element model to simulate the deformation of the two actuators under the internal pressure. The simulation result shows a visible difference between the responses of the two actuators to the same internal pressure. We qualitatively explain the reason for these differences based on the simulation result. The two actuators are made using the same process, which is briefly described in the work. We establish two prototypes of soft robots, a robotic gripper and a robotic fishtail, which are used to verify the applicability of the actuator with pleated structure and actuator with rib structure respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Paez, L., Agarwal, G., Paik, J.: Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robot. 3(3), 109–119 (2016)
Sedal, A., Bruder, D., Bishop-Moser, J., Vasudevan, R., Kota, S.: A continuum model for fiber-reinforced soft robot actuators. J. Mech. Robot. 10(2), 024501–024509 (2018)
Katzschmann, R.K., Marchese, A.D., Rus, D.: Autonomous object manipulation using a soft planar grasping manipulator. Soft Robot. 2(4), 155–164 (2015)
Marchese, A.D., Komorowski, K., Onal, C.D., Rus, D.: Design and control of a soft and continuously deformable 2D robotic manipulation system. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2189–2196 (2014)
Shepherd, R.F., et al.: Multigait soft robot. PNAS 108(51), 20400–20403 (2011)
Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A., Iida, F.: Soft manipulators and grippers: a review. Front. Robot. AI 3, 1–12 (2016)
Wu, P., Jiangbei, W., Yanqiong, F.: The structure, design, and closed-loop motion control of a differential drive soft robot. Soft Robot. 5(1), 71–80 (2018)
Correll, N., Önal, Ç.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials-using active elasticity and embedded distributed computation. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 79. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-28572-1_16
Abidi, H., et al.: Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 14(1), 1–9 (2018)
Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015)
Jusufi, A., Vogt, D.M., Wood, R.J., Lauder, G.V.: Undulatory swimming performance and body stiffness modulation in a soft robotic fish-inspired physical model. Soft Robot. 4(3), 202–210 (2017)
Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)
Renda, F., Giorgio-Serchi, F., Boyer, F., Laschi, C., Dias, J., Seneviratne, L.: A unified multi-soft-body dynamic model for underwater soft robots. Int. J. Robot. Res. 37(6), 648–666 (2018)
Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)
Marchese, A.D., Katzschmann, R.K., Rus, D.: Whole arm planning for a soft and highly compliant 2D robotic manipulator. In: IEEE International Conference on Intelligent Robots and Systems, pp. 554–560 (2014)
Onal, C.D., Chen, X., Whitesides, G.M., Rus, D.: Soft mobile robots with on-board chemical pressure generation. In: Christensen, H.I., Khatib, O. (eds.) Robotics Research. STAR, vol. 100, pp. 525–540. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_30
Alici, G., Canty, T., Mutlu, R., Hu, W., Sencadas, V.: Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robot. 5(1), 24–35 (2018)
Zhang, Z., Philen, M., Neu, W.: A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment. Smart Mater. Struct. 19(9), 094017 (2010)
Luo, M., Agheli, M., Onal, C.D.: Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft Robot. 1(2), 136–146 (2014)
Marchese, A.D., Rus, D.: Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int. J. Robot. Res. 35(7), 840–869 (2016)
Polygerinos, P., et al.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Rob. 31(3), 778–789 (2015)
Katzschmann, R.K., Marchese, A.D., Rus, D.: Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh, M.Ani, Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 405–420. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23778-7_27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, W., Chen, J., Wang, X., Hu, J., Li, Y. (2019). Analysis and Application of the Bending Actuators Used in Soft Robotics. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11741. Springer, Cham. https://doi.org/10.1007/978-3-030-27532-7_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-27532-7_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27531-0
Online ISBN: 978-3-030-27532-7
eBook Packages: Computer ScienceComputer Science (R0)