iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-27202-9_10
CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance | SpringerLink
Skip to main content

CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11662))

Included in the following conference series:

Abstract

We propose a novel direction to improve the denoising quality of filtering-based denoising algorithms in real time by predicting the best filter parameter value using a Convolutional Neural Network (CNN). We take the use case of BM3D, the state-of-the-art filtering-based denoising algorithm, to demonstrate and validate our approach. We propose and train a simple, shallow CNN to predict in real time, the optimum filter parameter value, given the input noisy image. Each training example consists of a noisy input image (training data) and the filter parameter value that produces the best output (training label). Both qualitative and quantitative results using the widely used PSNR and SSIM metrics on the popular BSD68 dataset show that the CNN-guided BM3D outperforms the original, unguided BM3D across different noise levels. Thus, our proposed method is a CNN-based improvement on the original BM3D which uses a fixed, default parameter value for all images.

Supported by NSERC Discovery Grant and DND Supplement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://cocodataset.org/#download.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Bashar, F., El-Sakka, M.R.: BM3D image denoising using learning-based adaptive hard thresholding. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and and Technology Publications (2016). https://doi.org/10.5220/0005787202040214

  3. Beheshti, S., Hashemi, M., Zhang, X.P., Nikvand, N.: Noise invalidation denoising. IEEE Trans. Signal Process. 58(12), 6007–6016 (2010). https://doi.org/10.1109/TSP.2010.2074199

    Article  MathSciNet  MATH  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  5. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399. IEEE (2012)

    Google Scholar 

  6. Chatterjee, P., Milanfar, P.: Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18(7), 1438–1451 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017). https://doi.org/10.1109/TPAMI.2016.2596743

    Article  Google Scholar 

  8. Chollet, F., et al.: Keras (2015). https://keras.io

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  10. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising with shape-adaptive principal component analysis. In: Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS 2009), April 2009

    Google Scholar 

  11. Dai, L., Zhang, Y., Li, Y.: BM3D image denoising algorithm with adaptive distance hard-threshold. Int. J. Signal Process. Image Process. Pattern Recognit. 6(6), 41–50 (2013). https://doi.org/10.14257/ijsip.2013.6.6.04

    Article  Google Scholar 

  12. Egiazarian, K., Danielyan, A., Ponomarenko, N., Foi, A., Ieremeiev, O., Lukin, V.: BM3D-HVS: content-adaptive denoising for improved visual quality. Electron. Imaging 2017(13), 48–55 (2017). https://doi.org/10.2352/issn.2470-1173.2017.13.dpmi-083

    Article  Google Scholar 

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  14. Elahi, P., Beheshti, S., Hashemi, M.: BM3D mridenoising equipped with noise invalidation technique. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6612–6616, May 2014

    Google Scholar 

  15. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Honzátko, D., Kruliš, M.: Accelerating block-matching and 3D filtering method for image denoising on GPUs. J. Real-Time Image Process. (2017). https://doi.org/10.1007/s11554-017-0737-9

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Lebrun, M.: An analysis and implementation of the BM3D image denoising method. Image Process. Line 2, 175–213 (2012). https://doi.org/10.5201/ipol.2012.l-bm3d

    Article  Google Scholar 

  20. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 689–696. ACM (2009)

    Google Scholar 

  21. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)

    Google Scholar 

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  23. Olmos, A., Kingdom, F.A.A.: A biologically inspired algorithm for the recovery of shading and reflectance images. Perception 33(12), 1463–1473 (2004). https://doi.org/10.1068/p5321

    Article  Google Scholar 

  24. Pltz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2750–2759, July 2017. https://doi.org/10.1109/CVPR.2017.294

  25. Romano, Y., Isidoro, J., Milanfar, P.: RAISR: rapid and accurate image super resolution. IEEE Trans. Comput. Imaging 3(1), 110–125 (2017)

    Article  MathSciNet  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  27. Sifre, L.: Rigid-motion scattering for image classification. Ph.D. thesis, Ecole Polytechnique, October 2014

    Google Scholar 

  28. Sun, L., Hays, J.: Super-resolution from internet-scale scene matching. In: 2012 IEEE International Conference on Computational Photography (ICCP), pp. 1–12, April 2012. https://doi.org/10.1109/ICCPhot.2012.6215221

  29. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  31. Weiss, Y., Freeman, W.T.: What makes a good model of natural images? In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  32. Yang, D., Sun, J.: BM3D-Net: a convolutional neural network for transform-domain collaborative filtering. IEEE Signal Process. Lett. 25(1), 55–59 (2018). https://doi.org/10.1109/LSP.2017.2768660

    Article  Google Scholar 

  33. Ye, X., Wang, L., Xing, H., Huang, L.: Denoising hybrid noises in image with stacked autoencoder. In: 2015 IEEE International Conference on Information and Automation, pp. 2720–2724, August 2015. https://doi.org/10.1109/ICInfA.2015.7279746

  34. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhu, F., Chen, G., Heng, P.A.: From noise modeling to blind image denoising. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 420–429, June 2016. https://doi.org/10.1109/CVPR.2016.52

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhayan Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, S., Kottayil, N.K., Sun, X., Cheng, I. (2019). CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11662. Springer, Cham. https://doi.org/10.1007/978-3-030-27202-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27202-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27201-2

  • Online ISBN: 978-3-030-27202-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics