iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-26951-7_6
Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning | SpringerLink
Skip to main content

Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11693))

Included in the following conference series:

Abstract

This paper has four main contributions. First, we calculate the predicted difference distribution of Speck32/64 with one specific input difference under the Markov assumption completely for up to eight rounds and verify that this yields a globally fairly good model of the difference distribution of Speck32/64. Secondly, we show that contrary to conventional wisdom, machine learning can produce very powerful cryptographic distinguishers: for instance, in a simple low-data, chosen plaintext attack on nine rounds of Speck, we present distinguishers based on deep residual neural networks that achieve a mean key rank roughly five times lower than an analogous classical distinguisher using the full difference distribution table. Thirdly, we develop a highly selective key search policy based on a variant of Bayesian optimization which, together with our neural distinguishers, can be used to reduce the remaining security of 11-round Speck32/64 to roughly 38 bits. This is a significant improvement over previous literature. Lastly, we show that our neural distinguishers successfully use features of the ciphertext pair distribution that are invisible to all purely differential distinguishers even given unlimited data.

While our attack is based on a known input difference taken from the literature, we also show that neural networks can be used to rapidly (within a matter of minutes on our machine) find good input differences without using prior human cryptanalysis. Supplementary code and data for this paper is available at https://github.com/agohr/deep_speck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As an implementation remark, note that with the neural networks used in this paper, the individual terms in the sum of Eq. 3 are up to a scale factor just the neural network outputs before application of the final sigmoid activation.

  2. 2.

    Running the same code with different parameters, other attacks can be obtained. The code repository, for instance, contains parameters for a 12-round attack that is practical on a single PC (with the parameters used, average runtime is under an hour on a GeForce GTX 1080 Ti GPU and success rate is \(\approx \)40%).

  3. 3.

    Note that for our neural networks, this argument can be slightly strengthened if the final sigmoid activation is removed, since then distinguisher output on an individual ciphertext pair is just a linear combination of 64 somewhat independent intermediate network units.

References

  1. Abadi, M., Andersen, D.G.: Learning to protect communications with adversarial neural cryptography. arXiv preprint arXiv:1610.06918 (2016)

  2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27

    Chapter  Google Scholar 

  3. Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanalysis for small block ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_1

    Chapter  MATH  Google Scholar 

  4. Ankele, R., Kölbl, S.: Mind the gap – a closer look at the security of block ciphers against differential cryptanalysis. In: Cid, C., Jacobson, M. (eds.) SAC 2018. LNCS, vol. 11349, pp. 163–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_8

    Chapter  Google Scholar 

  5. Ashur, T., Bodden, D.: Linear cryptanalysis of reduced-round SPECK. In: Proceedings of the 37th Symposium on Information Theory in the Benelux, Werkgemeenschap voor Informatie-en Communicatietheorie (2016)

    Google Scholar 

  6. Awad, W.S., El-Alfy, E.-S.: Computational intelligence in cryptology. In: Improving Information Security Practices through Computational Intelligence, pp. 28–45 (2015)

    Google Scholar 

  7. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  8. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK: block ciphers for the Internet of Things. IACR Cryptology ePrint Archive 2015/585 (2015)

    Google Scholar 

  9. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1–6. IEEE (2015)

    Google Scholar 

  10. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_18

    Chapter  Google Scholar 

  11. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 289–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_15

    Chapter  Google Scholar 

  12. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: theory and practice. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_3

    Chapter  Google Scholar 

  13. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2722–2730. IEEE (2015)

    Google Scholar 

  14. Chollet, F., et al. Keras (2015). https://keras.io

  15. Chou, J.-W., Lin, S.-D., Cheng, C.-M.: On the effectiveness of using state-of-the-art machine learning techniques to launch cryptographic distinguishing attacks. In: Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence, pp. 105–110. ACM (2012)

    Google Scholar 

  16. Clark, C., Storkey, A.: Training deep convolutional neural networks to play go. In: International Conference on Machine Learning, pp. 1766–1774 (2015)

    Google Scholar 

  17. Danziger, M., Henriques, M.A.A.: Improved cryptanalysis combining differential and artificial neural network schemes. In: 2014 International Telecommunications Symposium (ITS), pp. 1–5. IEEE (2014)

    Google Scholar 

  18. de Mello, F., Xexéo, J.: Identifying encryption algorithms in ECB and CBC modes using computational intelligence. J. Univ. Comput. Sci. 24(1), 25–42 (2018)

    Google Scholar 

  19. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

    Chapter  Google Scholar 

  20. Gomez, A.N., Huang, S., Zhang, I., Li, B.M., Osama, M., Kaiser, L.: Unsupervised cipher cracking using discrete GANs. In International Conference on Learning Representations (2018)

    Google Scholar 

  21. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv preprint arXiv:1708.07576 (2017)

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint: arXiv 1503.02531 (2015)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 288–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_18

    Chapter  Google Scholar 

  26. Lagerhjelm, L.: Extracting information from encrypted data using deep neural networks. Master’s thesis, Umeå University (2018)

    Google Scholar 

  27. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_2

    Chapter  Google Scholar 

  28. Laskari, E.C., Meletiou, G.C., Stamatiou, Y.C., Vrahatis, M.N.: Cryptography and cryptanalysis through computational intelligence. In: Nedjah, N., Abraham, A., Mourelle, L.M. (eds.) Computational Intelligence in Information Assurance and Security. Studies in Computational Intelligence, vol. 57, pp. 1–49. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71078-3_1

    Chapter  Google Scholar 

  29. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_28

    Chapter  Google Scholar 

  30. Liu, Y., Kai, F., Wang, W., Sun, L., Wang, M.: Linear cryptanalysis of reduced-round SPECK. Inf. Process. Lett. 116(3), 259–266 (2016)

    Article  MathSciNet  Google Scholar 

  31. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  32. Paterson, K.G., Poettering, B., Schuldt, J.C.N.: Big bias hunting in amazonia: large-scale computation and exploitation of RC4 biases (invited paper). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 398–419. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_21

    Chapter  MATH  Google Scholar 

  33. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the bayesian optimization algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 1, pp. 525–532. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  34. Picek, S., Heuser, A., Guilley: Template attack vs bayes classifier. Technical report, Cryptology ePrint Archive, Report 2017/531/2017 (2016)

    Google Scholar 

  35. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  36. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_36

    Chapter  Google Scholar 

  37. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  38. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  39. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  40. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

Download references

Acknowledgments

The author wishes to thank the anonymous reviewers for their questions and comments, as they helped him to improve the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron Gohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gohr, A. (2019). Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26951-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26950-0

  • Online ISBN: 978-3-030-26951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics