iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-26763-6_10
A Computer Immune Optimization Algorithm Based on Group Evolutionary Strategy | SpringerLink
Skip to main content

A Computer Immune Optimization Algorithm Based on Group Evolutionary Strategy

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11643))

Included in the following conference series:

  • 1519 Accesses

Abstract

Computer Immune Optimization Algorithm (CIOA) has the advantages of high success rate and good individual diversity compared with other intelligent optimization algorithms. However, it also has the disadvantages of premature convergence and local optimality. To address these shortcomings, this paper proposes a new algorithm, called ESCIOA, which enhances the mutation operation in CIOA, by introducing Recombination Operator and Mutation Operator of Group Evolution Strategy (GES), to achieve more accurate local optimization and faster global optimization. At the same time, this paper describes the implementation steps of ESCIOA, proves the convergence of the algorithm, and gives the comparative experiment. The results show that ESCIOA absorbs the advantages of CIOA and ES, and has the characteristics of not being easy to fall into local extremum, high precision of solution and fast convergence.

Foundation project: School-level Key Research Project (2017CYZDKY006); Scientific Research Program Guiding Project of Hubei Provincial Department of Education (B2016589).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cedersund, G., Samuelsson, O., Ball, G., et al.: Optimization in biology parameter estimation and the associated optimization problem. In: Geris, L., Gomez-Cabrero, D. (eds.) Uncertainty in Biology. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21296-8_7

    Chapter  Google Scholar 

  2. Branke, J.: MCDA and multi-objective evolutionary algorithms. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_23

    Chapter  Google Scholar 

  3. Cofnas, N.: Judaism as a group evolutionary strategy: a critical analysis of Kevin Macdonald’s theory. Hum. Nat. 29(2), 1–23 (2018)

    Article  Google Scholar 

  4. Bharathi, C., Rekha, D., Vijayakumar, V.: Genetic algorithm based demand side management for smart grid. Wirel. Pers. Commun. 93(2), 481–502 (2017)

    Article  Google Scholar 

  5. Read, M., Andrews, P.S., Timmis, J.: An introduction to artificial immune systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_47

    Chapter  Google Scholar 

  6. Aickelin, U., Dasgupta, D., Gu, F.: Artificial immune systems. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 187–211. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-6940-7_7

    Chapter  Google Scholar 

  7. Zandieh, M., Ghomi, S.M.T.F., Husseini, S.M.M.: An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Appl. Math. Comput. 180(1), 111–127 (2006)

    Article  MathSciNet  Google Scholar 

  8. Endoh, S., Toma, N., Yamada, K.: Immune algorithm for n-TSP. In: IEEE International Conference on Systems (1998)

    Google Scholar 

  9. Chun, J.S., Jung, H.K., Hahn, S.Y.: A study on comparison of optimization performances between immune algorithm and other heuristic algorithms. IEEE Trans. Magn. 34(5), 2972–2975 (1998)

    Article  Google Scholar 

  10. Aydin, I., Karakose, M., Akin, E.: A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl. Soft Comput. 11(1), 120–129 (2011)

    Article  Google Scholar 

  11. Anderson, R.E., Sogin, M.L., Baross, J.A.: Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLOS ONE 9, e109696 (2014)

    Article  Google Scholar 

  12. Murphy, K.P., Travers, P., Walport, M., et al.: Janeway’s Immunobiology (2014)

    Google Scholar 

  13. Traggiai, E., Chicha, L., Mazzucchelli, L., et al.: Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667), 104–107 (2004)

    Article  Google Scholar 

  14. Ranganathan, S.: Adaptive immune system. In: Encyclopedia of Systems Biology, pp. 10–11 (2016)

    Google Scholar 

  15. Hoyle, F., Wickramasinghe, N.C.: Biological evolution. Astrophys. Space Sci. 268(1–3), 55–75 (1999)

    Article  Google Scholar 

  16. Grant, P.R., Grant, B.R.: Evolution of character displacement in Darwin’s finches. Science 313(5784), 224–226 (2006)

    Article  Google Scholar 

  17. Hansen, N.: The CMA evolution strategy: a comparing review. Stud. Fuzziness Soft Comput. 192, 75–102 (2006)

    Article  Google Scholar 

  18. Hansen, N.: The CMA evolution strategy: a tutorial (2005)

    Google Scholar 

  19. Liem, K.F.: Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Biol. 22(4), 425–441 (1973)

    Google Scholar 

  20. Huemmer, C., Hofmann, C., Maas, R., et al.: The elitist particle filter based on evolutionary strategies as novel approach for nonlinear acoustic echo cancellation. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1315–1319. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Zhang, Hl., Peng, L. (2019). A Computer Immune Optimization Algorithm Based on Group Evolutionary Strategy. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26763-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26762-9

  • Online ISBN: 978-3-030-26763-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics