Abstract
Computer Immune Optimization Algorithm (CIOA) has the advantages of high success rate and good individual diversity compared with other intelligent optimization algorithms. However, it also has the disadvantages of premature convergence and local optimality. To address these shortcomings, this paper proposes a new algorithm, called ESCIOA, which enhances the mutation operation in CIOA, by introducing Recombination Operator and Mutation Operator of Group Evolution Strategy (GES), to achieve more accurate local optimization and faster global optimization. At the same time, this paper describes the implementation steps of ESCIOA, proves the convergence of the algorithm, and gives the comparative experiment. The results show that ESCIOA absorbs the advantages of CIOA and ES, and has the characteristics of not being easy to fall into local extremum, high precision of solution and fast convergence.
Foundation project: School-level Key Research Project (2017CYZDKY006); Scientific Research Program Guiding Project of Hubei Provincial Department of Education (B2016589).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cedersund, G., Samuelsson, O., Ball, G., et al.: Optimization in biology parameter estimation and the associated optimization problem. In: Geris, L., Gomez-Cabrero, D. (eds.) Uncertainty in Biology. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21296-8_7
Branke, J.: MCDA and multi-objective evolutionary algorithms. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_23
Cofnas, N.: Judaism as a group evolutionary strategy: a critical analysis of Kevin Macdonald’s theory. Hum. Nat. 29(2), 1–23 (2018)
Bharathi, C., Rekha, D., Vijayakumar, V.: Genetic algorithm based demand side management for smart grid. Wirel. Pers. Commun. 93(2), 481–502 (2017)
Read, M., Andrews, P.S., Timmis, J.: An introduction to artificial immune systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_47
Aickelin, U., Dasgupta, D., Gu, F.: Artificial immune systems. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 187–211. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-6940-7_7
Zandieh, M., Ghomi, S.M.T.F., Husseini, S.M.M.: An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Appl. Math. Comput. 180(1), 111–127 (2006)
Endoh, S., Toma, N., Yamada, K.: Immune algorithm for n-TSP. In: IEEE International Conference on Systems (1998)
Chun, J.S., Jung, H.K., Hahn, S.Y.: A study on comparison of optimization performances between immune algorithm and other heuristic algorithms. IEEE Trans. Magn. 34(5), 2972–2975 (1998)
Aydin, I., Karakose, M., Akin, E.: A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl. Soft Comput. 11(1), 120–129 (2011)
Anderson, R.E., Sogin, M.L., Baross, J.A.: Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLOS ONE 9, e109696 (2014)
Murphy, K.P., Travers, P., Walport, M., et al.: Janeway’s Immunobiology (2014)
Traggiai, E., Chicha, L., Mazzucchelli, L., et al.: Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667), 104–107 (2004)
Ranganathan, S.: Adaptive immune system. In: Encyclopedia of Systems Biology, pp. 10–11 (2016)
Hoyle, F., Wickramasinghe, N.C.: Biological evolution. Astrophys. Space Sci. 268(1–3), 55–75 (1999)
Grant, P.R., Grant, B.R.: Evolution of character displacement in Darwin’s finches. Science 313(5784), 224–226 (2006)
Hansen, N.: The CMA evolution strategy: a comparing review. Stud. Fuzziness Soft Comput. 192, 75–102 (2006)
Hansen, N.: The CMA evolution strategy: a tutorial (2005)
Liem, K.F.: Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Biol. 22(4), 425–441 (1973)
Huemmer, C., Hofmann, C., Maas, R., et al.: The elitist particle filter based on evolutionary strategies as novel approach for nonlinear acoustic echo cancellation. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1315–1319. IEEE (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, F., Zhang, Hl., Peng, L. (2019). A Computer Immune Optimization Algorithm Based on Group Evolutionary Strategy. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-26763-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26762-9
Online ISBN: 978-3-030-26763-6
eBook Packages: Computer ScienceComputer Science (R0)