iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-25636-4_24
HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images Exploiting the Full Dynamics of Gray-Scale Levels | SpringerLink
Skip to main content

HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images Exploiting the Full Dynamics of Gray-Scale Levels

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2019)

Abstract

Image texture extraction and analysis are fundamental steps in Computer Vision. In particular, considering the biomedical field, quantitative imaging methods are increasingly gaining importance since they convey scientifically and clinically relevant information for prediction, prognosis, and treatment response assessment. In this context, radiomic approaches are fostering large-scale studies that can have a significant impact in the clinical practice. In this work, we focus on Haralick features, the most common and clinically relevant descriptors. These features are based on the Gray-Level Co-occurrence Matrix (GLCM), whose computation is considerably intensive on images characterized by a high bit-depth (e.g., 16 bits), as in the case of medical images that convey detailed visual information. We propose here HaraliCU, an efficient strategy for the computation of the GLCM and the extraction of an exhaustive set of the Haralick features. HaraliCU was conceived to exploit the parallel computation capabilities of modern Graphics Processing Units (GPUs), allowing us to achieve up to \(\sim \!20\times \) speed-up with respect to the corresponding C++ coded sequential version. Our GPU-powered solution highlights the promising capabilities of GPUs in the clinical research.

L. Rundo and A. Tangherloni—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://uk.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features.

References

  1. Trivedi, M.M., Harlow, C.A., Conners, R.W., Goh, S.: Object detection based on gray level cooccurrence. Comput. Vis. Graph. Image Process. 28(2), 199–219 (1984)

    Article  Google Scholar 

  2. Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)

    Article  Google Scholar 

  3. Torheim, T., et al.: Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans. Med. Imaging 33(8), 1648–1656 (2014)

    Article  Google Scholar 

  4. Yankeelov, T.E., et al.: Quantitative imaging in cancer clinical trials. Clin. Cancer Res. 22(2), 284–290 (2016)

    Article  Google Scholar 

  5. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  6. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749 (2017)

    Article  Google Scholar 

  7. Yip, S.S., Aerts, H.J.: Applications and limitations of radiomics. Phys. Med. Biol. 61(13), R150 (2016)

    Article  Google Scholar 

  8. Stoyanova, R., et al.: Prostate cancer radiomics and the promise of radiogenomics. Transl. Cancer Res. 5(4), 432 (2016)

    Article  Google Scholar 

  9. Chen, C.C., DaPonte, J.S., Fox, M.D.: Fractal feature analysis and classification in medical imaging. IEEE Trans. Med. Imaging 8(2), 133–142 (1989)

    Article  Google Scholar 

  10. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  11. Thibault, G., et al.: Shape and texture indexes application to cell nuclei classification. Int. J. Pattern Recognit. Artif. Intell. 27(01), 1357002 (2013)

    Article  MathSciNet  Google Scholar 

  12. Zhu, H., et al.: A new local multiscale Fourier analysis for medical imaging. Med. Phys. 30(6), 1134–1141 (2003)

    Article  Google Scholar 

  13. Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pattern Recognit. Lett. 24(9–10), 1513–1521 (2003)

    Article  MATH  Google Scholar 

  14. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  15. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  16. Brynolfsson, P., et al.: Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci. Rep. 7(1), 4041 (2017)

    Article  Google Scholar 

  17. Gómez, W., Pereira, W., Infantosi, A.F.C.: Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Trans. Med. Imaging 31(10), 1889–1899 (2012)

    Article  Google Scholar 

  18. Ortiz, A., Górriz, J., Ramírez, J., Salas-Gonzalez, D., Llamas-Elvira, J.M.: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl. Soft Comput. 13(5), 2668–2682 (2013)

    Article  Google Scholar 

  19. Park, S., Kim, B., Lee, J., Goo, J.M., Shin, Y.G.: GGO nodule volume-preserving nonrigid lung registration using GLCM texture analysis. IEEE Trans. Biomed. Eng. 58(10), 2885–2894 (2011)

    Article  Google Scholar 

  20. Rundo, L., et al.: MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Syst. Appl. 119, 387–399 (2019)

    Article  Google Scholar 

  21. Dercle, L., et al.: Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence. Sci. Rep. 7(1), 7952 (2017)

    Article  Google Scholar 

  22. Gipp, M., et al.: Haralick’s texture features computation accelerated by GPUs for biological applications. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 127–137. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25707-0_11

    Chapter  Google Scholar 

  23. Leijenaar, R.T., et al.: The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci. Rep. 5, 11075 (2015)

    Article  Google Scholar 

  24. Orlhac, F., Soussan, M., Chouahnia, K., Martinod, E., Buvat, I.: 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One 10(12), e0145063 (2015)

    Article  Google Scholar 

  25. Orlhac, F., Soussan, M., Maisonobe, J.A., Garcia, C.A., Vanderlinden, B., Buvat, I.: Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med. 55(3), 414–422 (2014)

    Article  Google Scholar 

  26. Jen, C.C., Yu, S.S.: Automatic detection of abnormal mammograms in mammographic images. Expert Syst. Appl. 42(6), 3048–3055 (2015)

    Article  Google Scholar 

  27. Shafiq-ul Hassan, M., Latifi, K., Zhang, G., Ullah, G., Gillies, R., Moros, E.: Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci. Rep. 8(1), 10545 (2018)

    Article  Google Scholar 

  28. Larue, R.T., et al.: Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol. 56(11), 1544–1553 (2017)

    Article  Google Scholar 

  29. Luebke, D.: CUDA: scalable parallel programming for high-performance scientific computing. In: Proceedings 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 836–838. IEEE (2008)

    Google Scholar 

  30. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform. 18(5), 870–885 (2016)

    Google Scholar 

  31. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the GPU-past, present and future. Med. Image Anal. 17(8), 1073–1094 (2013)

    Article  Google Scholar 

  32. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs-a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)

    Article  Google Scholar 

  33. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  34. Tsai, H.Y., Zhang, H., Hung, C.L., Min, G.: GPU-accelerated features extraction from magnetic resonance images. IEEE Access 5, 22634–22646 (2017)

    Article  Google Scholar 

  35. Militello, C., et al.: Gamma Knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised Fuzzy C-Means clustering. Int. J. Imaging Syst. Technol. 25(3), 213–225 (2015)

    Article  Google Scholar 

  36. Vargas, H.A., et al.: A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur. Radiol. 27(9), 3991–4001 (2017)

    Article  Google Scholar 

  37. Rizzo, S., et al.: Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur. Radiol. 28, 4849–4859 (2018)

    Article  Google Scholar 

  38. Pinker, K., et al.: Background, current role, and potential applications of radiogenomics. J. Magn. Reson. Imaging 47(3), 604–620 (2018)

    Article  Google Scholar 

  39. Gupta, S., Xiang, P., Zhou, H.: Analyzing locality of memory references in GPU architectures. In: Proceedings ACM SIGPLAN Workshop on Memory Systems Performance and Correctness. ACM (2013). 12

    Google Scholar 

  40. Sala, E., et al.: Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72(1), 3–10 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by The Mark Foundation for Cancer Research and Cancer Research UK Cambridge Centre [C9685/A25177]. Additional support has been provided by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rundo, L. et al. (2019). HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images Exploiting the Full Dynamics of Gray-Scale Levels. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2019. Lecture Notes in Computer Science(), vol 11657. Springer, Cham. https://doi.org/10.1007/978-3-030-25636-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25636-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25635-7

  • Online ISBN: 978-3-030-25636-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics