iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-22368-7_28
Global Similarity with Additive Smoothness for Spectral Segmentation | SpringerLink
Skip to main content

Global Similarity with Additive Smoothness for Spectral Segmentation

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Abstract

Faithful representation of pairwise pixel affinities is crucial for the outcome of spectral segmentation methods. In conventional affinity models only close-range pixels interact, and a variety of subsequent techniques aims at faster propagation of local grouping cues across long-range connections. In this paper we propose a general framework for constructing a full-range affinity matrix. Our affinity matrix consists of a global similarity matrix and an additive proximity matrix. The similarity in appearance, including intensity and texture, is encoded for each pair of image pixels. Despite being full-range, our similarity matrix has a simple decomposition, which exploits an assignment of image pixels to dictionary elements. The additive proximity enforces smoothness to the segmentation by imposing interactions between near-by pixels. Our approach allows us to assess the advantages of using a full-range affinity for various spectral segmentation problems. Within our general framework we develop a few variants of full affinity for experimental validation. The performance we accomplish on composite textured images is excellent, and the results on natural images are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1124–1131. IEEE (2005)

    Google Scholar 

  3. Dahl, A.B., Dahl, V.A.: Dictionary based image segmentation. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19665-7_3

    Chapter  Google Scholar 

  4. Dahl, V.A., Dahl, A.B.: A probabilistic framework for curve evolution. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 421–432. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_34

    Chapter  Google Scholar 

  5. Golub, G., Van Loan, C.F.: Matrix Computations, p. 642. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  6. Kim, T.H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1690–1703 (2013)

    Article  Google Scholar 

  7. Li, Z., Wu, X.M., Chang, S.F.: Segmentation using superpixels: a bipartite graph partitioning approach. In: Conference on Computer Vision and Pattern Recognition, pp. 789–796. IEEE (2012)

    Google Scholar 

  8. Lillo, A.D., Motta, G., Storer, J., et al.: Texture classification based on discriminative features extracted in the frequency domain. In: International Conference on Image Processing, vol. 2, pp. II–53. IEEE (2007)

    Google Scholar 

  9. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  10. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)

    Article  Google Scholar 

  11. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: International Conference on Computer Vision, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  12. Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  14. Skretting, K., Engan, K.: Energy minimization by \(\alpha \)-erosion for supervised texture segmentation. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol. 8814, pp. 207–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11758-4_23

    Chapter  Google Scholar 

  15. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  16. Wang, X., Li, H., Bichot, C.E., Masnou, S., Chen, L.: A graph-cut approach to image segmentation using an affinity graph based on \(\ell _0\)-sparse representation of features. In: International Conference on Image Processing, pp. 4019–4023. IEEE (2013)

    Google Scholar 

  17. Wang, X., Tang, Y., Masnou, S., Chen, L.: A global/local affinity graph for image segmentation. IEEE Trans. Image Process. 24(4), 1399–1411 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedrana Andersen Dahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahl, V.A., Dahl, A.B. (2019). Global Similarity with Additive Smoothness for Spectral Segmentation. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics