iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-21363-3_7
Maximal Diameter on a Class of Circulant Graphs | SpringerLink
Skip to main content

Maximal Diameter on a Class of Circulant Graphs

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11545))

Included in the following conference series:

  • 390 Accesses

Abstract

Integral circulant graphs are proposed as models for quantum spin networks. Specifically, it is important to know how far information can potentially be transferred between nodes of the quantum networks modeled by integral circulant graphs and this task is related to calculating the maximal diameter of a graph. The integral circulant graph \(\mathrm {ICG}_n (D)\) has the vertex set \(Z_n = \{0, 1, 2, \ldots , n - 1\}\) and vertices a and b are adjacent if \(\gcd (a-b,n)\in D\), where \(D \subseteq \{d : d \mid n,\ 1\le d<n\}\). Motivated by the result on the upper bound of the diameter of \(\mathrm {ICG}_n(D)\) given in [N. Saxena, S. Severini, I. Shparlinski, Parameters of integral circulant graphs and periodic quantum dynamics, International Journal of Quantum Information 5 (2007), 417–430], which is equal to \(2|D|+1\), in this paper we prove that the maximal value of the diameter of the integral circulant graph \(\mathrm {ICG}_n(D)\) of a given order n with its prime factorization \(p_1^{\alpha _1}\cdots p_k^{\alpha _k}\) and \(|D|=k\), is equal to \(k + |\{ i \ | \alpha _i> 1,\ 1\le i\le k \}|\). This way we further improve the upper bound of Saxena, Severini and Shparlinski. Moreover, we characterize all such extremal graphs. We also show that the upper bound is attainable for integral circulant graphs \(\mathrm {ICG}_n(D)\) such that \(|D|\le k\).

This work was supported by Research Grant 174013 of Serbian Ministry of Science and Technological Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bašić, M.: Characterization of circulant graphs having perfect state transfer. Quantum Inf. Process. 12, 345–364 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bašić, M.: Which weighted circulant networks have perfect state transfer? Inf. Sci. 257, 193–209 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bašić, M., Ilić, A.: On the clique number of integral circulant graphs. Appl. Math. Lett. 22, 1406–1411 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bašić, M., Ilić, A.: On the automorphism group of integral circulant graphs. Electron. J. Comb. 18 (2011). #P68

    Google Scholar 

  5. Berrizbeitia, P., Giudic, R.E.: On cycles in the sequence of unitary Cayley graphs. Discrete Math. 282, 239–243 (2004)

    Article  MathSciNet  Google Scholar 

  6. Fuchs, E.: Longest induced cycles in circulant graphs. Electron. J. Comb. 12, 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford University Press, New York (1979)

    MATH  Google Scholar 

  8. Hwang, F.K.: A survey on multi-loop networks. Theor. Comput. Sci. 299, 107–121 (2003)

    Article  MathSciNet  Google Scholar 

  9. Ilić, A.: Distance spectra and distance energy of integral circulant graphs. Linear Algebra Appl. 433, 1005–1014 (2010)

    Article  MathSciNet  Google Scholar 

  10. Ilić, A., Bašić, M.: On the chromatic number of integral circulant graphs. Comput. Math. Appl. 60, 144–150 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ilić, A., Bašić, M.: New results on the energy of integral circulant graphs. Appl. Math. Comput. 218, 3470–3482 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Klotz, W., Sander, T.: Some properties of unitary Cayley graphs. Electron. J. Comb. 14 (2007). #R45

    Google Scholar 

  13. Park, J.H., Chwa, K.Y.: Recursive circulants and their embeddings among hypercubes. Theor. Comput. Sci. 244, 35–62 (2000)

    Article  MathSciNet  Google Scholar 

  14. Ramaswamy, H.N., Veena, C.R.: On the energy of unitary Cayley graphs. Electro. J. Comb. 16 (2007). #N24

    Google Scholar 

  15. Saxena, N., Severini, S., Shparlinski, I.: Parameters of integral circulant graphs and periodic quantum dynamics. Int. J. Quant. Inf. 5, 417–430 (2007)

    Article  Google Scholar 

  16. Sander, J.W., Sander, T.: The maximal energy of classes of integral circulant graphs. Discrete Appl. Math. 160, 2015–2029 (2012)

    Article  MathSciNet  Google Scholar 

  17. So, W.: Integral circulant graphs. Discrete Math. 306, 153–158 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Bašić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bašić, M., Ilić, A., Stamenković, A. (2019). Maximal Diameter on a Class of Circulant Graphs. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21363-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21362-6

  • Online ISBN: 978-3-030-21363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics