iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-20890-5_18
Perceptual Conditional Generative Adversarial Networks for End-to-End Image Colourization | SpringerLink
Skip to main content

Perceptual Conditional Generative Adversarial Networks for End-to-End Image Colourization

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

Abstract

Colours are everywhere. They embody a significant part of human visual perception. In this paper, we explore the paradigm of hallucinating colours from a given gray-scale image. The problem of colourization has been dealt in previous literature but mostly in a supervised manner involving user-interference. With the emergence of Deep Learning methods numerous tasks related to computer vision and pattern recognition have been automatized and carried in an end-to-end fashion due to the availability of large data-sets and high-power computing systems. We investigate and build upon the recent success of Conditional Generative Adversarial Networks (cGANs) for Image-to-Image translations. In addition to using the training scheme in the basic cGAN, we propose an encoder-decoder generator network which utilizes the class-specific cross-entropy loss as well as the perceptual loss in addition to the original objective function of cGAN. We train our model on a large-scale dataset and present illustrative qualitative and quantitative analysis of our results. Our results vividly display the versatility and the proficiency of our methods through life-like colourization outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–55 (2009)

    Article  Google Scholar 

  2. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 415–423 (2015)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  7. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be Color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. 35(4), Article: 110, 110:1–110:11 (2016). (Proc. of SIGGRAPH 2016)

    Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)

    Google Scholar 

  9. Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. CoRR abs/1603.08155 (2016). http://arxiv.org/abs/1603.08155

  10. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 689–694. ACM, New York (2004). https://doi.org/10.1145/1186562.1015780. http://doi.acm.org/10.1145/1186562.1015780

  11. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  12. Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theor. 20(4), 525–536 (2006). https://doi.org/10.1109/TIT.1974.1055250

    Article  MATH  Google Scholar 

  13. Nazeri, K., Ng, E., Ebrahimi, M.: Image colorization using generative adversarial networks. In: Perales, F.J., Kittler, J. (eds.) AMDO 2018. LNCS, vol. 10945, pp. 85–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94544-6_9

    Chapter  Google Scholar 

  14. Noda, H., Niimi, M., Korekuni, J.: Simple and efficient colorization in YCbCr color space. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 685–688 (2006). https://doi.org/10.1109/ICPR.2006.1053

  15. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001). https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  17. Sapiro, G.: Inpainting the colors. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II-698–701 (2005). https://doi.org/10.1109/ICIP.2005.1530151

  18. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006). https://doi.org/10.1109/TIP.2005.859378

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  20. Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002). https://doi.org/10.1109/97.995823

    Article  Google Scholar 

  23. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 277–280. ACM, New York (2002). https://doi.org/10.1145/566570.566576. http://doi.acm.org/10.1145/566570.566576

  24. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957 (2017)

  25. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  26. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Ayan Kumar Bhunia for his guidance and help regarding implementation and development of the model. We would also like to thank Mr. Ayush Daruka and Mr. Prashant Kumar for their valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanjar De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halder, S.S., De, K., Roy, P.P. (2019). Perceptual Conditional Generative Adversarial Networks for End-to-End Image Colourization. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics