Abstract
Colours are everywhere. They embody a significant part of human visual perception. In this paper, we explore the paradigm of hallucinating colours from a given gray-scale image. The problem of colourization has been dealt in previous literature but mostly in a supervised manner involving user-interference. With the emergence of Deep Learning methods numerous tasks related to computer vision and pattern recognition have been automatized and carried in an end-to-end fashion due to the availability of large data-sets and high-power computing systems. We investigate and build upon the recent success of Conditional Generative Adversarial Networks (cGANs) for Image-to-Image translations. In addition to using the training scheme in the basic cGAN, we propose an encoder-decoder generator network which utilizes the class-specific cross-entropy loss as well as the perceptual loss in addition to the original objective function of cGAN. We train our model on a large-scale dataset and present illustrative qualitative and quantitative analysis of our results. Our results vividly display the versatility and the proficiency of our methods through life-like colourization outcomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–55 (2009)
Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 415–423 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be Color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. 35(4), Article: 110, 110:1–110:11 (2016). (Proc. of SIGGRAPH 2016)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)
Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. CoRR abs/1603.08155 (2016). http://arxiv.org/abs/1603.08155
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 689–694. ACM, New York (2004). https://doi.org/10.1145/1186562.1015780. http://doi.acm.org/10.1145/1186562.1015780
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)
Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theor. 20(4), 525–536 (2006). https://doi.org/10.1109/TIT.1974.1055250
Nazeri, K., Ng, E., Ebrahimi, M.: Image colorization using generative adversarial networks. In: Perales, F.J., Kittler, J. (eds.) AMDO 2018. LNCS, vol. 10945, pp. 85–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94544-6_9
Noda, H., Niimi, M., Korekuni, J.: Simple and efficient colorization in YCbCr color space. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 685–688 (2006). https://doi.org/10.1109/ICPR.2006.1053
Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001). https://doi.org/10.1109/38.946629
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597
Sapiro, G.: Inpainting the colors. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II-698–701 (2005). https://doi.org/10.1109/ICIP.2005.1530151
Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006). https://doi.org/10.1109/TIP.2005.859378
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861
Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002). https://doi.org/10.1109/97.995823
Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 277–280. ACM, New York (2002). https://doi.org/10.1145/566570.566576. http://doi.acm.org/10.1145/566570.566576
Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957 (2017)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018)
Acknowledgements
We would like to thank Mr. Ayan Kumar Bhunia for his guidance and help regarding implementation and development of the model. We would also like to thank Mr. Ayush Daruka and Mr. Prashant Kumar for their valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Halder, S.S., De, K., Roy, P.P. (2019). Perceptual Conditional Generative Adversarial Networks for End-to-End Image Colourization. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-20890-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20889-9
Online ISBN: 978-3-030-20890-5
eBook Packages: Computer ScienceComputer Science (R0)