Abstract
Bounding-box regression is a popular technique to refine or predict localization boxes in recent object detection approaches. Typically, bounding-box regressors are trained to regress from either region proposals or fixed anchor boxes to nearby bounding boxes of a pre-defined target object classes. This paper investigates whether the technique is generalizable to unseen classes and is transferable to other tasks beyond supervised object detection. To this end, we propose a class-agnostic and anchor-free box regressor, dubbed Universal Bounding-Box Regressor (UBBR), which predicts a bounding box of the nearest object from any given box. Trained on a relatively small set of annotated images, UBBR successfully generalizes to unseen classes, and can be used to improve localization in many vision problems. We demonstrate its effectiveness on weakly supervised object detection and object discovery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. TPAMI 34, 2189–2202 (2012)
Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)
Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: CVPR (2016)
Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: ICCV (2017)
Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. TPAMI 34, 1312–1328 (2012)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40, 834–848 (2017)
Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: CVPR (2014)
Cho, M., Kwak, S., Schmid, C., Ponce, J.: Unsupervised object discovery and localization in the wild: part-based matching with bottom-up region proposals. In: CVPR (2015)
Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking. TPAMI 36, 222–234 (2014)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)
Girshick, R.: Fast R-CNN. In: ICCV (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hong, S., Oh, J., Han, B., Lee, H.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. In: CVPR (2016)
Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017)
Humayun, A., Li, F., Rehg, J.M.: Rigor: reusing inference in graph cuts for generating object regions. In: CVPR (2014)
Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.: Selective search for object recognition. IJCV 104, 154–171 (2013)
Joulin, A., Tang, K., Fei-Fei, L.: Efficient image and video co-localization with frank-wolfe algorithm. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 253–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_17
Kantorov, V., Oquab, M., Cho, M., Laptev, I.: ContextLocNet: context-aware deep network models for weakly supervised localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 350–365. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_22
Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_47
Li, Y., Liu, L., Shen, C., van den Hengel, A.: Image co-localization by mimicking a good detector’s confidence score distribution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_2
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
Manen, S., Guillaumin, M., Van Gool, L.: Prime object proposals with randomized prim’s algorithm. In: ICCV (2013)
Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR (2014)
Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: NIPS (2015)
Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5
Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object detection cascade. In: ICCV (2011)
Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: CVPR (2014)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: CVPR (2017)
Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: ACMMM (2016)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26
Acknowledgements
This research was supported by Samsung Research and also by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT (NRF-2018R1A5A1060031, NRF-2017R1E1A1A01077999).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, S., Kwak, S., Cho, M. (2019). Universal Bounding Box Regression and Its Applications. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-20876-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20875-2
Online ISBN: 978-3-030-20876-9
eBook Packages: Computer ScienceComputer Science (R0)