iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-20876-9_24
Universal Bounding Box Regression and Its Applications | SpringerLink
Skip to main content

Universal Bounding Box Regression and Its Applications

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

Bounding-box regression is a popular technique to refine or predict localization boxes in recent object detection approaches. Typically, bounding-box regressors are trained to regress from either region proposals or fixed anchor boxes to nearby bounding boxes of a pre-defined target object classes. This paper investigates whether the technique is generalizable to unseen classes and is transferable to other tasks beyond supervised object detection. To this end, we propose a class-agnostic and anchor-free box regressor, dubbed Universal Bounding-Box Regressor (UBBR), which predicts a bounding box of the nearest object from any given box. Trained on a relatively small set of annotated images, UBBR successfully generalizes to unseen classes, and can be used to improve localization in many vision problems. We demonstrate its effectiveness on weakly supervised object detection and object discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. TPAMI 34, 2189–2202 (2012)

    Article  Google Scholar 

  2. Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)

    Google Scholar 

  3. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: CVPR (2016)

    Google Scholar 

  4. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  5. Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. TPAMI 34, 1312–1328 (2012)

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40, 834–848 (2017)

    Article  Google Scholar 

  7. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: CVPR (2014)

    Google Scholar 

  8. Cho, M., Kwak, S., Schmid, C., Ponce, J.: Unsupervised object discovery and localization in the wild: part-based matching with bottom-up region proposals. In: CVPR (2015)

    Google Scholar 

  9. Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking. TPAMI 36, 222–234 (2014)

    Article  Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Hong, S., Oh, J., Han, B., Lee, H.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. In: CVPR (2016)

    Google Scholar 

  16. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017)

    Google Scholar 

  17. Humayun, A., Li, F., Rehg, J.M.: Rigor: reusing inference in graph cuts for generating object regions. In: CVPR (2014)

    Google Scholar 

  18. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.: Selective search for object recognition. IJCV 104, 154–171 (2013)

    Article  Google Scholar 

  19. Joulin, A., Tang, K., Fei-Fei, L.: Efficient image and video co-localization with frank-wolfe algorithm. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 253–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_17

    Chapter  Google Scholar 

  20. Kantorov, V., Oquab, M., Cho, M., Laptev, I.: ContextLocNet: context-aware deep network models for weakly supervised localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 350–365. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_22

    Chapter  Google Scholar 

  21. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_47

    Chapter  Google Scholar 

  22. Li, Y., Liu, L., Shen, C., van den Hengel, A.: Image co-localization by mimicking a good detector’s confidence score distribution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_2

    Chapter  Google Scholar 

  23. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  25. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  26. Manen, S., Guillaumin, M., Van Gool, L.: Prime object proposals with randomized prim’s algorithm. In: ICCV (2013)

    Google Scholar 

  27. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  28. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: NIPS (2015)

    Google Scholar 

  29. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5

    Chapter  Google Scholar 

  30. Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object detection cascade. In: ICCV (2011)

    Google Scholar 

  31. Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: CVPR (2014)

    Google Scholar 

  32. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  33. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  36. Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: CVPR (2017)

    Google Scholar 

  37. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: ACMMM (2016)

    Google Scholar 

  38. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by Samsung Research and also by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT (NRF-2018R1A5A1060031, NRF-2017R1E1A1A01077999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsu Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, S., Kwak, S., Cho, M. (2019). Universal Bounding Box Regression and Its Applications. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics