iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-20351-1_50
A Model for Elastic Evolution on Foliated Shapes | SpringerLink
Skip to main content

A Model for Elastic Evolution on Foliated Shapes

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

We study a shape evolution framework in which the deformation of shapes from time t to \(t+dt\) is governed by a regularized anisotropic elasticity model. More precisely, we assume that at each time shapes are infinitesimally deformed from a stress-free state to an elastic equilibrium as a result of the application of a small force. The configuration of equilibrium then becomes the new resting state for subsequent evolution. The primary motivation of this work is the modeling of slow changes in biological shapes like atrophy, where a body force applied to the volume represents the location and impact of the disease. Our model uses an optimal control viewpoint with the time derivative of force interpreted as a control, deforming a shape gradually from its observed initial state to an observed final state. Furthermore, inspired by the layered organization of cortical volumes, we consider a special case of our model in which shapes can be decomposed into a family of layers (forming a “foliation”). Preliminary experiments on synthetic layered shapes in two and three dimensions are presented to demonstrate the effect of elasticity.

Laurent Younes partially supported by NIH 1R01DC016784-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amar, M.B., Goriely, A.: Growth and instability in elastic tissues. J. Mech. Phys. Solids 53(10), 2284–2319 (2005)

    Article  MathSciNet  Google Scholar 

  2. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  3. Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)

    Article  Google Scholar 

  4. Ciarlet, P.G.: Three-Dimensional Elasticity, vol. 20. Elsevier, North Holland (1988)

    MATH  Google Scholar 

  5. Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical thickness measurement. Neuroimage 45(3), 867–879 (2009)

    Article  Google Scholar 

  6. DiCarlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29(6), 449–456 (2002)

    Article  MathSciNet  Google Scholar 

  7. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103(1), 22–59 (2013)

    Article  MathSciNet  Google Scholar 

  8. Grenander, U., Srivastava, A., Saini, S.: A pattern-theoretic characterization of biological growth. IEEE Trans. Med. Imaging 26(5), 648–659 (2007)

    Article  Google Scholar 

  9. Gris, B., Durrleman, S., Trouvé, A.: A sub-riemannian modular approach for diffeomorphic deformations. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 39–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25040-3_5

    Chapter  Google Scholar 

  10. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Linear Theories of Elasticity and Thermoelasticity, pp. 1–295. Springer, Heidelberg (1973). https://doi.org/10.1007/978-3-662-39776-3_1

    Chapter  Google Scholar 

  11. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum. Brain Mapp. 11(1), 12–32 (2000)

    Article  Google Scholar 

  12. Khanal, B., Lorenzi, M., Ayache, N., Pennec, X.: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer’s disease. NeuroImage 134, 35–52 (2016)

    Article  Google Scholar 

  13. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39(18), 4627–4664 (2002)

    Article  Google Scholar 

  14. Marsden, J.E., Hughes, T.J.: Mathematical Foundations of Elasticity. Courier Corporation, North Chelmsford (1994)

    MATH  Google Scholar 

  15. Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps. ACM Trans. Graph. (TOG) 24(3), 626–633 (2005)

    Article  Google Scholar 

  16. Qiu, A., Albert, M., Younes, L., Miller, M.I.: Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes. NeuroImage 45(1), S51–S60 (2009)

    Article  Google Scholar 

  17. Ratnanather, J.T., Arguillère, S., Kutten, K.S., Hubka, P., Kral, A., Younes, L.: 3D normal coordinate systems for cortical areas. arXiv preprint arXiv:1806.11169 (2018)

  18. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  19. Tallinen, T., Chung, J.Y., Rousseau, F., Girard, N., Lefèvre, J., Mahadevan, L.: On the growth and form of cortical convolutions. Nat. Phys. 12(6), 588 (2016)

    Article  Google Scholar 

  20. Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Ni Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hsieh, DN., Arguillère, S., Charon, N., Miller, M.I., Younes, L. (2019). A Model for Elastic Evolution on Foliated Shapes. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics