iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-19591-5_39
Comparison Between Affine and Non-affine Transformations Applied to I $$^{[123]}$$ -FP-CIT SPECT Images Used for Parkinson’s Disease Diagnosis | SpringerLink
Skip to main content

Comparison Between Affine and Non-affine Transformations Applied to I\(^{[123]}\)-FP-CIT SPECT Images Used for Parkinson’s Disease Diagnosis

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

In recent years, the use of I\(^{[123]}\)-FP-CIT or I\(^{[123]}\)-Ioflupane SPECT images has emerged as an effective support tool for Parkinson’s Disease diagnosis. Many works in this field have consisted on comparing different images obtained from subjects both Healthy Control (HC) subjects and patients with Parkinsonism (PD) and using them to obtain measures (features) able to discern among them. In this scenario, spatial normalization of I\(^{[123]}\)-FP-CIT images is fundamental to match equivalent areas of the brain from different subjects.

This work tries to compare the two most common ways to make the spatial normalization of SPECT images from PD and HC subjects in the study of Parkinsonism: affine and non-affine transformations. For that, these two approaches have been applied to a set of 20 images obtained from 20 different subjects (11 HC and 9 with PD) and measured how volume of new voxels, when applying normalization to a reference template, has changed.

Despite the accurate match obtained when using a non-affine spatial normalization procedure, using this method involves that some parts of the brain are compressed or stretched in excess to fit the template. This effect is even more pronounced when using PD images than HC. Using the affine procedure, striatum area preserves better its morphology and can be used to obtain more reliable morphological features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Millennium model from General Electric.

  2. 2.

    For more info, visit: http://www.huvv.es/

  3. 3.

    Website: https://www.fil.ion.ucl.ac.uk/spm/. Documentation about SPM, manuals and references are also available from this URL.

References

  1. Feigin, V.L., et al.: Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 16(11), 877–897 (2017)

    Article  Google Scholar 

  2. Sixel-Döring, F., et al.: The role of \(^{123}\)I-FP-CIT-SPECT in the differential diagnosis of Parkinson and tremor syndromes: a critical assessment of 125 cases. J. Neurol. 258(12), 2147–2154 (2011)

    Article  Google Scholar 

  3. Booth, T.C., et al.: The role of functional dopamine-transporter SPECT imaging in Parkinsonian syndromes, part 2. Am. J. Neuroradiol. 36(2), 236–244 (2015)

    Article  Google Scholar 

  4. Marek, K.L., et al.: [\(^{\rm 123}\)I]\(\upbeta \)-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 57(11), 2089–2094 (2001)

    Article  Google Scholar 

  5. Badoud, S., et al.: Discriminating among degenerative Parkinsonisms using advanced \(^{123}\)I-ioflupane SPECT analyses. NeuroImage Clin. 12(Suppl. C), 234–240 (2016)

    Article  Google Scholar 

  6. Augimeri, A., et al.: CADA-computer-aided DaTSCAN analysis. EJNMMI Phys. 3(1), 2197–7364 (2016)

    Article  Google Scholar 

  7. Martinez-Murcia, F., et al.: A 3D convolutional neural network approach for the diagnosis of Parkinson’s disease. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 324–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59740-9_32

    Chapter  Google Scholar 

  8. Segovia, F., et al.: Multivariate analysis of \(^{18}\)F-DMFP PET data to assist the diagnosis of Parkinsonism. Front. Neuroinform. 11, 23 (2017)

    Article  Google Scholar 

  9. Castillo-Barnes, D., et al.: Robust ensemble classification methodology for I\(^{123}\)-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front. Neuroinform. 12, 53 (2018)

    Article  Google Scholar 

  10. Owens-Walton, C., et al.: Striatal changes in Parkinson disease: an investigation of morphology, functional connectivity and their relationship to clinical symptoms. Psychiatry Res.: Neuroimaging 275, 5–13 (2018)

    Article  Google Scholar 

  11. Segovia, F., et al.: Automatic separation of Parkinsonian patients and control subjects based on the striatal morphology. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 345–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59740-9_34

    Chapter  Google Scholar 

  12. Castillo-Barnes, D., Segovia, F., Martinez-Murcia, F.J., Salas-Gonzalez, D., Ramírez, J., Górriz, J.M.: Classification improvement for Parkinson’s disease diagnosis using the gradient magnitude in DaTSCAN SPECT images. In: Graña, M., et al. (eds.) SOCO’18-CISIS’18-ICEUTE’18. AISC, vol. 771, pp. 100–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_10

    Chapter  Google Scholar 

  13. Friston, K.J., et al.: Spatial registration and normalization of images. Hum. Brain Mapp. 3(3), 165–189 (1995)

    Article  Google Scholar 

  14. Woods, R.P., et al.: Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22(1), 139–152 (1998)

    Article  Google Scholar 

  15. Friston, K.J., et al.: Statistical Parametric Mapping. Elsevier Ltd., Oxford (2006)

    Google Scholar 

  16. Ashburner, J., Friston, K.J.: Non-linear registration. In: Statistical Parmetric Mapping, Chap. 5. Elsevier (2007)

    Google Scholar 

  17. Ashburner, J., et al.: Incorporating prior knowledge into image registration. Neuroimage 6(4), 344–352 (1997)

    Article  Google Scholar 

  18. Ashburner, J., et al.: Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–266 (1999)

    Article  Google Scholar 

  19. Salas-Gonzalez, D., et al.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics 13(4), 391–402 (2015)

    Article  Google Scholar 

  20. Sakai, K., et al.: Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn. J. Radiol. 37(1), 34–72 (2018)

    Article  Google Scholar 

  21. Saeed, U., et al.: Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl. Neurodegener. 6(1), 8 (2017)

    Article  Google Scholar 

  22. Burciu, R.G., et al.: Progression marker of Parkinson’s disease: a 4-year multi-site imaging study. Brain 140(8), 2183–2192 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the MINECO/FEDER under the TEC2015-64718-R project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Castillo-Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Barnes, D. et al. (2019). Comparison Between Affine and Non-affine Transformations Applied to I\(^{[123]}\)-FP-CIT SPECT Images Used for Parkinson’s Disease Diagnosis. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics