Abstract
In recent years, the use of I\(^{[123]}\)-FP-CIT or I\(^{[123]}\)-Ioflupane SPECT images has emerged as an effective support tool for Parkinson’s Disease diagnosis. Many works in this field have consisted on comparing different images obtained from subjects both Healthy Control (HC) subjects and patients with Parkinsonism (PD) and using them to obtain measures (features) able to discern among them. In this scenario, spatial normalization of I\(^{[123]}\)-FP-CIT images is fundamental to match equivalent areas of the brain from different subjects.
This work tries to compare the two most common ways to make the spatial normalization of SPECT images from PD and HC subjects in the study of Parkinsonism: affine and non-affine transformations. For that, these two approaches have been applied to a set of 20 images obtained from 20 different subjects (11 HC and 9 with PD) and measured how volume of new voxels, when applying normalization to a reference template, has changed.
Despite the accurate match obtained when using a non-affine spatial normalization procedure, using this method involves that some parts of the brain are compressed or stretched in excess to fit the template. This effect is even more pronounced when using PD images than HC. Using the affine procedure, striatum area preserves better its morphology and can be used to obtain more reliable morphological features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Millennium model from General Electric.
- 2.
For more info, visit: http://www.huvv.es/
- 3.
Website: https://www.fil.ion.ucl.ac.uk/spm/. Documentation about SPM, manuals and references are also available from this URL.
References
Feigin, V.L., et al.: Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 16(11), 877–897 (2017)
Sixel-Döring, F., et al.: The role of \(^{123}\)I-FP-CIT-SPECT in the differential diagnosis of Parkinson and tremor syndromes: a critical assessment of 125 cases. J. Neurol. 258(12), 2147–2154 (2011)
Booth, T.C., et al.: The role of functional dopamine-transporter SPECT imaging in Parkinsonian syndromes, part 2. Am. J. Neuroradiol. 36(2), 236–244 (2015)
Marek, K.L., et al.: [\(^{\rm 123}\)I]\(\upbeta \)-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 57(11), 2089–2094 (2001)
Badoud, S., et al.: Discriminating among degenerative Parkinsonisms using advanced \(^{123}\)I-ioflupane SPECT analyses. NeuroImage Clin. 12(Suppl. C), 234–240 (2016)
Augimeri, A., et al.: CADA-computer-aided DaTSCAN analysis. EJNMMI Phys. 3(1), 2197–7364 (2016)
Martinez-Murcia, F., et al.: A 3D convolutional neural network approach for the diagnosis of Parkinson’s disease. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 324–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59740-9_32
Segovia, F., et al.: Multivariate analysis of \(^{18}\)F-DMFP PET data to assist the diagnosis of Parkinsonism. Front. Neuroinform. 11, 23 (2017)
Castillo-Barnes, D., et al.: Robust ensemble classification methodology for I\(^{123}\)-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front. Neuroinform. 12, 53 (2018)
Owens-Walton, C., et al.: Striatal changes in Parkinson disease: an investigation of morphology, functional connectivity and their relationship to clinical symptoms. Psychiatry Res.: Neuroimaging 275, 5–13 (2018)
Segovia, F., et al.: Automatic separation of Parkinsonian patients and control subjects based on the striatal morphology. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 345–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59740-9_34
Castillo-Barnes, D., Segovia, F., Martinez-Murcia, F.J., Salas-Gonzalez, D., Ramírez, J., Górriz, J.M.: Classification improvement for Parkinson’s disease diagnosis using the gradient magnitude in DaTSCAN SPECT images. In: Graña, M., et al. (eds.) SOCO’18-CISIS’18-ICEUTE’18. AISC, vol. 771, pp. 100–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_10
Friston, K.J., et al.: Spatial registration and normalization of images. Hum. Brain Mapp. 3(3), 165–189 (1995)
Woods, R.P., et al.: Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22(1), 139–152 (1998)
Friston, K.J., et al.: Statistical Parametric Mapping. Elsevier Ltd., Oxford (2006)
Ashburner, J., Friston, K.J.: Non-linear registration. In: Statistical Parmetric Mapping, Chap. 5. Elsevier (2007)
Ashburner, J., et al.: Incorporating prior knowledge into image registration. Neuroimage 6(4), 344–352 (1997)
Ashburner, J., et al.: Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–266 (1999)
Salas-Gonzalez, D., et al.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics 13(4), 391–402 (2015)
Sakai, K., et al.: Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn. J. Radiol. 37(1), 34–72 (2018)
Saeed, U., et al.: Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl. Neurodegener. 6(1), 8 (2017)
Burciu, R.G., et al.: Progression marker of Parkinson’s disease: a 4-year multi-site imaging study. Brain 140(8), 2183–2192 (2017)
Acknowledgment
This work has been supported by the MINECO/FEDER under the TEC2015-64718-R project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Castillo-Barnes, D. et al. (2019). Comparison Between Affine and Non-affine Transformations Applied to I\(^{[123]}\)-FP-CIT SPECT Images Used for Parkinson’s Disease Diagnosis. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)