iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-15939-9_7
Discovering Knowledge Embedded in Bio-medical Databases: Experiences in Food Characterization and in Medical Process Mining | SpringerLink
Skip to main content

Discovering Knowledge Embedded in Bio-medical Databases: Experiences in Food Characterization and in Medical Process Mining

  • Chapter
  • First Online:
Innovations in Big Data Mining and Embedded Knowledge

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 159))

Abstract

In this paper, we will explore the potential of knowledge discovery from bio-medical databases in health safeguard, by illustrating two specific case studies, where different knowledge extraction techniques have been exploited. Specifically, we will first report on how machine learning and data mining algorithms can address the problem of food adulteration. Then, we will show how process mining techniques can be adopted to analyze the quality of patient care provided at a specific health care organization. Working in the bio-medical application domain has not only led to consistent and concretely useful experimental outcomes, but has also required some significant methodological advances with respect to the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This does not mean that techniques like PCA are not used in machine learning approaches, however they are often adopted as preliminary step (e.g. for feature reduction) rather than as main techniques to identify classes as in SIMCA analysis [32].

References

  1. Borin, A., Ferro, M.F., Mello, C., Maretto, D.A., Poppi, R.J.: Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Anal. Chimica Acta 579(1):25 – 32, 2006

    Article  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Davis, R., Mauer, L.J.: Fourier transform infrared (ftir) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2, 1582–1594 (2010)

    Google Scholar 

  4. de Medeiros, A.K.A., van der Aalst, W.M.P.: Process mining towards semantics. In: Dillon, T.S. Chang, E., Meersman, R., Sycara, K.P. (eds.) Advances in Web Semantics I—Ontologies, Web Services and Applied Semantic Web. Lecture Notes in Computer Science, vol. 4891, pp. 35–80. Springer (2009)

    Google Scholar 

  5. de Medeiros, A.K.A., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process mining tools: Core building blocks. In: Golden, W., Acton, T., Conboy, K., van der Heijden, H., Tuunainen, V.K. (eds.) 2008 16th European Conference on Information Systems, ECIS, pp. 1953–1964. Galway, Ireland (2008)

    Google Scholar 

  6. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 01, pp. 973–978. Seattle, WA (2001)

    Google Scholar 

  7. Ellis, D.I., Broadhurst, D., Goodacre, R.: Rapid and quantitative detection of the microbial spoilage of beef by fourier transform infrared spectroscopy and machine learning. Anal. Chimica Acta 514(2):193–201 (2004)

    Article  Google Scholar 

  8. Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process mining for the verification of medical recommendations. In: Traver, V., Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) HEALTHINF 2011–Proceedings of the International Conference on Health Informatics, pp. 5–16. SciTePress Rome, Italy, 26–29 Jan 2011

    Google Scholar 

  9. Hall, M.A.: Correlation-based feature subset selection for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning, ICML, 2000, pp. 359–366. Stanford, CA (2000)

    Google Scholar 

  10. IEEE Taskforce on Process Mining: Process Mining Manifesto. http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto. Accessed 22 Nov 2017

  11. Jareevongpiboon, W., Janecek, P.: Ontological approach to enhance results of business process mining and analysis. Bus. Proc. Manag. J. 19(3), 459–476 (2013)

    Article  Google Scholar 

  12. Kamruzzaman, M., Makino, Y., Oshita, S.: Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 170, 8–15 (2016)

    Article  Google Scholar 

  13. Kemsley, E.K., Holland, J.K., Defernez, M., Wilson, R.H.: Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J. Agric. Food Chem. pp. 3864–3870 (1996)

    Article  Google Scholar 

  14. Lpez-Dez, E.C., Bianchi, G., Goodacre, R.: Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using raman spectroscopy and chemometrics. J. Agric. Food Chem. PMID: 14518936, 51(21):6145–6150 (2003)

    Google Scholar 

  15. De Maio, M.N., Salatino, M., Aliverti, E.: Mastering JBoss Drools 6 for Developers. Packt Publishing (2016)

    Google Scholar 

  16. Mans, R., Schonenberg, H., Leonardi, G., Panzarasa, S., Cavallini, A., Quaglini, S., et al.: Process mining techniques: an application to stroke care. In: Andersen, S., Klein, G.O., Schulz, S., Aarts, J. (eds.) Proceedings of the MIE. Studies in Health Technology and Informatics, vol. 136, pp. 573–578. IOS Press, Amsterdam (2008)

    Google Scholar 

  17. Mans, R., van der Aalst, W., Vanwersch, R., Moleman, A.: Process mining in healthcare: Data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth/KR4HC. Lecture Notes in Computer Science, vol. 7738, pp. 140–153. Springer, Berlin (2013)

    Google Scholar 

  18. Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: A knowledge-intensive approach to process similarity calculation. Expert Syst. Appl. 42(9), 4207–4215 (2015)

    Article  Google Scholar 

  19. Montani, S., Leonardi, G., Striani, M., Quaglini, S., Cavallini, A.: Multi-level abstraction for trace comparison and process discovery. Expert Syst. Appl. 81, 398–409 (2017)

    Article  Google Scholar 

  20. Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G.: Towards semantic process mining through knowledge-based trace abstraction. In: Ceravolo, P., van Keulen, M., Stoffel, K. (eds.) Proceedings of the 7th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2017). CEUR Workshop Proceedings, vol 2016, pp. 98–112. CEUR-WS.org, Neuchâtel, Switzerland, 6-8 Dec 2017

    Google Scholar 

  21. Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and mining. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management SBPM 2007, held in conjunction with the 3rd European Semantic Web Conference (ESWC 2007). CEUR Workshop Proceedings, vol. 251, Innsbruck, Austria, 7 June 2007

    Google Scholar 

  22. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: Scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008),pp. 546–553. IEEE Computer Society, Santa Clara, California, USA, 4–7 Aug 2008

    Google Scholar 

  23. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 185–208. MIT Press (1999)

    Google Scholar 

  24. Portinale, L., Saitta, L.: Feature selection. Technical Report D.14.1, Mining Mart Project (2002). http://mmart.cs.uni-dortmund.de/content/publications.html

  25. Rojas, E., Munoz-Gama, J., Sepulveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)

    Article  Google Scholar 

  26. Ropodi, A.I., Pavlidis, D.E., Mohareb, F., Panagou, E.Z., Nychas, G.-J.E.: Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. Food Res. Int. 67, 12–18 (2015)

    Article  Google Scholar 

  27. Schmutzler, M., Beganovic, A., Bhler, G., Huck, C.W.: Methods for detection of pork adulteration in veal product based on FT-NIR spectroscopy for laboratory, industrial and on-site analysis. Food Control 57, 258–267 (2015)

    Article  Google Scholar 

  28. van der Aalstm, W.: Process Mining. Data Science in Action. Springer (2016)

    Google Scholar 

  29. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of properties: an approach based on temporal logic. In: Meersman, R., Tari, Z., Hacid, M., Mylopoulos, J., Pernici, B., Babaoglu, Ö., Jacobsen, H., Loyall, J.P., Kifer, M., Spaccapietra, S. (eds.) On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, OTM Confederated International Conferences CoopIS, DOA, and ODBASE 2005. Lecture Notes in Computer Science, Proceedings, Part I, vol. 3760, pp. 130–147. Agia Napa, Cyprus, Oct 31 – 4 Nov 2005. Springer 2005

    Google Scholar 

  30. van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The proM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) Knowledge Mangement and its Integrative Elements, pp. 444–454. Springer, Berlin (2005)

    Google Scholar 

  31. Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process Mining with the Heuristic Miner Algorithm, WP 166. Eindhoven University of Technology, Eindhoven (2006)

    Google Scholar 

  32. Wold, S., SJSTRM, M.: SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy, Chap. 12, pp. 243–282

    Google Scholar 

  33. Zhang, L.-G., Zhang, X., Ni, L.-J., Xue, Z.-B., Xin, G., Huang, S.-X.: Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy. Food Chem. 145, 342–348 (2014)

    Article  Google Scholar 

  34. Zhou, Z-H., Liu, X-Y.: On multi-class cost-sensitive learning 26(3):232–257 (2010)

    Google Scholar 

  35. Zhu, X., Li, S., Shan, Y., Zhang, Z., Li, G., Donglin, S., Liu, F.: Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J. Food Eng. 101(1), 92–97 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Leonardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonardi, G., Montani, S., Portinale, L., Quaglini, S., Striani, M. (2019). Discovering Knowledge Embedded in Bio-medical Databases: Experiences in Food Characterization and in Medical Process Mining. In: Esposito, A., Esposito, A., Jain, L. (eds) Innovations in Big Data Mining and Embedded Knowledge. Intelligent Systems Reference Library, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-15939-9_7

Download citation

Publish with us

Policies and ethics