Abstract
In this paper, we will explore the potential of knowledge discovery from bio-medical databases in health safeguard, by illustrating two specific case studies, where different knowledge extraction techniques have been exploited. Specifically, we will first report on how machine learning and data mining algorithms can address the problem of food adulteration. Then, we will show how process mining techniques can be adopted to analyze the quality of patient care provided at a specific health care organization. Working in the bio-medical application domain has not only led to consistent and concretely useful experimental outcomes, but has also required some significant methodological advances with respect to the existing literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This does not mean that techniques like PCA are not used in machine learning approaches, however they are often adopted as preliminary step (e.g. for feature reduction) rather than as main techniques to identify classes as in SIMCA analysis [32].
References
Borin, A., Ferro, M.F., Mello, C., Maretto, D.A., Poppi, R.J.: Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Anal. Chimica Acta 579(1):25 – 32, 2006
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Davis, R., Mauer, L.J.: Fourier transform infrared (ftir) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2, 1582–1594 (2010)
de Medeiros, A.K.A., van der Aalst, W.M.P.: Process mining towards semantics. In: Dillon, T.S. Chang, E., Meersman, R., Sycara, K.P. (eds.) Advances in Web Semantics I—Ontologies, Web Services and Applied Semantic Web. Lecture Notes in Computer Science, vol. 4891, pp. 35–80. Springer (2009)
de Medeiros, A.K.A., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process mining tools: Core building blocks. In: Golden, W., Acton, T., Conboy, K., van der Heijden, H., Tuunainen, V.K. (eds.) 2008 16th European Conference on Information Systems, ECIS, pp. 1953–1964. Galway, Ireland (2008)
Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 01, pp. 973–978. Seattle, WA (2001)
Ellis, D.I., Broadhurst, D., Goodacre, R.: Rapid and quantitative detection of the microbial spoilage of beef by fourier transform infrared spectroscopy and machine learning. Anal. Chimica Acta 514(2):193–201 (2004)
Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process mining for the verification of medical recommendations. In: Traver, V., Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) HEALTHINF 2011–Proceedings of the International Conference on Health Informatics, pp. 5–16. SciTePress Rome, Italy, 26–29 Jan 2011
Hall, M.A.: Correlation-based feature subset selection for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning, ICML, 2000, pp. 359–366. Stanford, CA (2000)
IEEE Taskforce on Process Mining: Process Mining Manifesto. http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto. Accessed 22 Nov 2017
Jareevongpiboon, W., Janecek, P.: Ontological approach to enhance results of business process mining and analysis. Bus. Proc. Manag. J. 19(3), 459–476 (2013)
Kamruzzaman, M., Makino, Y., Oshita, S.: Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 170, 8–15 (2016)
Kemsley, E.K., Holland, J.K., Defernez, M., Wilson, R.H.: Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J. Agric. Food Chem. pp. 3864–3870 (1996)
Lpez-Dez, E.C., Bianchi, G., Goodacre, R.: Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using raman spectroscopy and chemometrics. J. Agric. Food Chem. PMID: 14518936, 51(21):6145–6150 (2003)
De Maio, M.N., Salatino, M., Aliverti, E.: Mastering JBoss Drools 6 for Developers. Packt Publishing (2016)
Mans, R., Schonenberg, H., Leonardi, G., Panzarasa, S., Cavallini, A., Quaglini, S., et al.: Process mining techniques: an application to stroke care. In: Andersen, S., Klein, G.O., Schulz, S., Aarts, J. (eds.) Proceedings of the MIE. Studies in Health Technology and Informatics, vol. 136, pp. 573–578. IOS Press, Amsterdam (2008)
Mans, R., van der Aalst, W., Vanwersch, R., Moleman, A.: Process mining in healthcare: Data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth/KR4HC. Lecture Notes in Computer Science, vol. 7738, pp. 140–153. Springer, Berlin (2013)
Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: A knowledge-intensive approach to process similarity calculation. Expert Syst. Appl. 42(9), 4207–4215 (2015)
Montani, S., Leonardi, G., Striani, M., Quaglini, S., Cavallini, A.: Multi-level abstraction for trace comparison and process discovery. Expert Syst. Appl. 81, 398–409 (2017)
Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G.: Towards semantic process mining through knowledge-based trace abstraction. In: Ceravolo, P., van Keulen, M., Stoffel, K. (eds.) Proceedings of the 7th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2017). CEUR Workshop Proceedings, vol 2016, pp. 98–112. CEUR-WS.org, Neuchâtel, Switzerland, 6-8 Dec 2017
Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and mining. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management SBPM 2007, held in conjunction with the 3rd European Semantic Web Conference (ESWC 2007). CEUR Workshop Proceedings, vol. 251, Innsbruck, Austria, 7 June 2007
Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: Scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008),pp. 546–553. IEEE Computer Society, Santa Clara, California, USA, 4–7 Aug 2008
Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 185–208. MIT Press (1999)
Portinale, L., Saitta, L.: Feature selection. Technical Report D.14.1, Mining Mart Project (2002). http://mmart.cs.uni-dortmund.de/content/publications.html
Rojas, E., Munoz-Gama, J., Sepulveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)
Ropodi, A.I., Pavlidis, D.E., Mohareb, F., Panagou, E.Z., Nychas, G.-J.E.: Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. Food Res. Int. 67, 12–18 (2015)
Schmutzler, M., Beganovic, A., Bhler, G., Huck, C.W.: Methods for detection of pork adulteration in veal product based on FT-NIR spectroscopy for laboratory, industrial and on-site analysis. Food Control 57, 258–267 (2015)
van der Aalstm, W.: Process Mining. Data Science in Action. Springer (2016)
van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of properties: an approach based on temporal logic. In: Meersman, R., Tari, Z., Hacid, M., Mylopoulos, J., Pernici, B., Babaoglu, Ö., Jacobsen, H., Loyall, J.P., Kifer, M., Spaccapietra, S. (eds.) On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, OTM Confederated International Conferences CoopIS, DOA, and ODBASE 2005. Lecture Notes in Computer Science, Proceedings, Part I, vol. 3760, pp. 130–147. Agia Napa, Cyprus, Oct 31 – 4 Nov 2005. Springer 2005
van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The proM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) Knowledge Mangement and its Integrative Elements, pp. 444–454. Springer, Berlin (2005)
Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process Mining with the Heuristic Miner Algorithm, WP 166. Eindhoven University of Technology, Eindhoven (2006)
Wold, S., SJSTRM, M.: SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy, Chap. 12, pp. 243–282
Zhang, L.-G., Zhang, X., Ni, L.-J., Xue, Z.-B., Xin, G., Huang, S.-X.: Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy. Food Chem. 145, 342–348 (2014)
Zhou, Z-H., Liu, X-Y.: On multi-class cost-sensitive learning 26(3):232–257 (2010)
Zhu, X., Li, S., Shan, Y., Zhang, Z., Li, G., Donglin, S., Liu, F.: Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J. Food Eng. 101(1), 92–97 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Leonardi, G., Montani, S., Portinale, L., Quaglini, S., Striani, M. (2019). Discovering Knowledge Embedded in Bio-medical Databases: Experiences in Food Characterization and in Medical Process Mining. In: Esposito, A., Esposito, A., Jain, L. (eds) Innovations in Big Data Mining and Embedded Knowledge. Intelligent Systems Reference Library, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-15939-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-15939-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15938-2
Online ISBN: 978-3-030-15939-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)