iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-14812-6_15
Unshuffling Permutations: Trivial Bijections and Compositions | SpringerLink
Skip to main content

Unshuffling Permutations: Trivial Bijections and Compositions

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

  • 652 Accesses

Abstract

Given permutations \(\pi \), \(\sigma _1\) and \(\sigma _2\), the permutation \(\pi \) (viewed as a string) is said to be a shuffle of \(\sigma _1\) and \(\sigma _2\), in symbols , if \(\pi \) can be formed by interleaving the letters of two strings \(p_1\) and \(p_2\) that are order-isomorphic to \(\sigma _1\) and \(\sigma _2\), respectively. Given a permutation \(\pi \in S_{2n}\) and a bijective mapping \(f : S_n \rightarrow S_n\), the f-Unshuffle-Permutation problem is to decide whether there exists a permutation \(\sigma \in S_n\) such that . We consider here this problem for the following bijective mappings: inversion, reverse, complementation, and all their possible compositions. In particular, we present combinatorial results about the permutations accepted by this problem. As main results, we obtain that this problem is \(\mathsf {NP}\)-complete when f is the reverse, the complementation, or the composition of the reverse with the complementation.

Partially supported by Laboratoire International Franco-Québécois de Recherche en Combinatoire (LIRCO) (G. Fertin and S. Vialette), supported by the Individual Discovery Grant RGPIN-2016-04576 from Natural Sciences and Engineering Research Council of Canada (NSERC) (S. Hamel).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process. Lett. 65(5), 277–283 (1998)

    Article  MathSciNet  Google Scholar 

  2. Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4), 766–776 (2014)

    Article  MathSciNet  Google Scholar 

  3. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 329–438. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_6

    Chapter  Google Scholar 

  4. Giraudo, S., Vialette, S.: Algorithmic and algebraic aspects of unshuffling permutations. Theor. Comput. Sci. 729, 20–41 (2018)

    Article  MathSciNet  Google Scholar 

  5. Knuth, D.E.: The Art of Computer Programming: Volume III: Sorting and Searching. Addison-Wesley, Boston (1973)

    MATH  Google Scholar 

  6. van Leeuwen, J., Nivat, M.: Efficient recognition of rational relations. Inf. Process. Lett. 14(1), 34–38 (1982)

    Article  MathSciNet  Google Scholar 

  7. Mansfield, A.: On the computational complexity of a merge recognition problem. Discrete Appl. Math. 5(1), 119–122 (1983)

    Article  MathSciNet  Google Scholar 

  8. Neou, B.E., Rizzi, R., Vialette, S.: Pattern matching for separable permutations. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 260–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9_25

    Chapter  Google Scholar 

  9. Rizzi, R., Vialette, S.: On recognizing words that are squares for the shuffle product. In: Proceedings of the 8th International Symposium in Computer Science - Theory and Applications, pp. 235–245 (2013)

    Google Scholar 

  10. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org/

  11. Stankova, Z.: Forbidden subsequences. Discrete Math. 132(1–3), 291–316 (1994)

    Article  MathSciNet  Google Scholar 

  12. Vargas, Y.: Hopf algebra of permutation pattern functions. In: 26th International Conference on Formal Power Series and Algebraic Combinatorics, pp. 839–850 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Vialette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fertin, G., Giraudo, S., Hamel, S., Vialette, S. (2019). Unshuffling Permutations: Trivial Bijections and Compositions. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics