iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-11680-4_33
Continuous Detection of Abnormal Heartbeats from ECG Using Online Outlier Detection | SpringerLink
Skip to main content

Continuous Detection of Abnormal Heartbeats from ECG Using Online Outlier Detection

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2018)

Abstract

Detecting abnormal heartbeats from an electrocardiogram (ECG) signal is an important problem studied extensively and yet is a difficult problem that defies a viable working solution, especially on a mobile platform which requires computationally efficient and yet accurate detection mechanism. In this project, a prototype system has been built to test the feasibility and efficacy of detecting abnormal ECG segments from an ECG data stream targeting a mobile device, where data are arriving continuously and indefinitely and are processed online incrementally and efficiently without being stored in memory. The processing comprises three steps: (i) segmentation using R peak detection, (ii) feature extraction using discrete wavelet transform, and (iii) outlier detection using incremental online microclustering. Experiments conducted using real ambulatory ECG datasets showed satisfactory accuracy. In addition, comparing personalized detection (tuned separately for each patient’s ECG datasets) and non-personalized detection (tuned aggregated over all patients’ datasets) confirms a definite advantage of personalized detection for ECG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angiulli, F., Fassetti, F.: Distance-based outlier queries in data streams: the novel task and algorithms. Data Min. Knowl. Discov. 20(2), 290–324 (2010)

    Article  MathSciNet  Google Scholar 

  2. Assent, I., Kranen, P., Baldauf, C., Seidl, T.: AnyOut: anytime outlier detection on streaming data. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7238, pp. 228–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29038-1_18

    Chapter  Google Scholar 

  3. Bazett, H.C.: An analysis of the time-relations of electrocardiograms. Heart 7, 353–370 (1920)

    Google Scholar 

  4. Bensaid, A.M., Bouhouch, N., Bouhouch, R., Fellat, R., Amri, R.: Classification of ECG patterns using fuzzy rules derived from ID3-induced decision trees. In: Proceedings of the Conference of the North American Fuzzy Information Processing Society, pp. 34–38, August 1998

    Google Scholar 

  5. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: Proceedings of the IEEE International Conference on Data Science and Advanced Analytics, pp. 1–7, October 2015

    Google Scholar 

  6. Chen, H.C., Chen, S.W.: A moving average based filtering system with its application to real-time QRS detection. In: Computers in Cardiology, pp. 585–588, September 2003

    Google Scholar 

  7. Firebug: Practical hyperparameter optimization: Random vs. grid search (2016). https://stats.stackexchange.com/q/209409. Accessed 18 April 2018

  8. Georgiadis, D., Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y.: Continuous outlier detection in data streams: an extensible framework and state-of-the-art algorithms. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1061–1064, June 2013

    Google Scholar 

  9. Houghton, A.R., Gray, D.: Making Sense of the ECG. CRC Press, Boca Raton (2007)

    Google Scholar 

  10. Karczewicz, M., Gabbouj, M.: ECG data compression by spline approximation. Signal Process. 59(1), 43–59 (1997)

    Article  Google Scholar 

  11. Khare, S., Bhandari, A., Singh, S., Arora, A.: ECG arrhythmia classification using spearman rank correlation and support vector machine. In: Deep, K., Nagar, A., Pant, M., Bansal, J.C. (eds.) Proceedings of the International Conference on Soft Computing for Problem Solving December, 2011. AISC, vol. 131, pp. 591–598. Springer, New Delhi (2012). https://doi.org/10.1007/978-81-322-0491-6_54

    Chapter  Google Scholar 

  12. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th International Conference on Very Large Data Bases, pp. 392–403 (1998)

    Google Scholar 

  13. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: Algorithms and applications. VLDB J. 8(3–4), 237–253 (2000)

    Article  Google Scholar 

  14. Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y.: Continuous monitoring of distance-based outliers over data streams. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 135–146, April 2011

    Google Scholar 

  15. Macek, J.: Incremental learning of ensemble classifiers on ECG data. In: Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, pp. 315–320, June 2005

    Google Scholar 

  16. Monasterio, V., Laguna, P., Martinez, J.P.: Multilead analysis of t-wave alternans in the ECG using principal component analysis. IEEE Trans. Biomed. Eng. 56(7), 1880–1890 (2009)

    Article  Google Scholar 

  17. Patel, A.M., Gakare, P.K., Cheeran, A.N.: Real time ECG feature extraction and arrhythmia detection on a mobile platform. Int. J. Comput. Appl. 44(23), 40–45 (2012)

    Google Scholar 

  18. PhysioNet: MIT-BIH Arrhythmia Database Directory (Introduction) (2010). https://physionet.org/physiobank/database/html/mitdbdir/intro.htm. Accessed 29 May 2018

  19. PhysioNet: PysioBank Annotation (2016). https://www.physionet.org/physiobank/annotations.shtml. Accessed 25 May 2018

  20. PhysioNet: MIT-BIH Arrhythmia Database Directory (Records) (2018). https://www.physionet.org/physiobank/database/html/mitdbdir/records.htm#207. Accessed 14 June 2018

  21. PyWavelet: Signal extension modes PyWavelets Documentation (2018). http://pywavelets.readthedocs.io/en/latest/ref/signal-extension-modes.html. Accessed 2 June 2018

  22. Tran, L., Fan, L., Shahabi, C.: Distance-based outlier detection in data streams. Proc. VLDB Endow. 9(12), 1089–1100 (2016)

    Article  Google Scholar 

  23. Veeravalli, B., Deepu, C.J., Ngo, D.H.: Real-time, personalized anomaly detection in streaming data for wearable healthcare devices. In: Khan, S.U., Zomaya, A.Y., Abbas, A. (eds.) Handbook of Large-Scale Distributed Computing in Smart Healthcare. SCC, pp. 403–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58280-1_15

    Chapter  Google Scholar 

  24. Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., Kumar, R.: ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 6, 9767–9773 (2018)

    Article  Google Scholar 

  25. Yang, D., Rundensteiner, E.A., Ward, M.O.: Neighbor-based pattern detection for windows over streaming data. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, pp. 529–540 (2009)

    Google Scholar 

  26. Yang, T.F., Devine, B., Macfarlane, P.W.: Artificial neural networks for the diagnosis of atrial fibrillation. Med. Biol. Eng. Comput. 32(6), 615–619 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Suk Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Lee, B.S., Lustgarten, D. (2019). Continuous Detection of Abnormal Heartbeats from ECG Using Online Outlier Detection. In: Lossio-Ventura, J., Muñante, D., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2018. Communications in Computer and Information Science, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-030-11680-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11680-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11679-8

  • Online ISBN: 978-3-030-11680-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics