iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-11509-8_9
Drawing Bipartite Graphs in Two Layers with Specified Crossings | SpringerLink
Skip to main content

Drawing Bipartite Graphs in Two Layers with Specified Crossings

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11394))

Included in the following conference series:

  • 952 Accesses

Abstract

We give a polynomial-time algorithm to decide whether a bipartite graph admits a two-layer drawing in the plane such that a specified subset of pairs of edges cross. This is a generalization of the problem of recognizing permutation graphs, and we generalize the characterization of permutation graphs.

S. K. Ghosh—The author’s work is funded by SERB, Government of India through a grant under MATRICS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diwan, A.A., Roy, B., Ghosh, S.K.: Two-layer drawings of bipartite graphs. Electron. Notes Discret. Math. 61, 351–357 (2017). https://doi.org/10.1016/j.endm.2017.06.059

    Article  MATH  Google Scholar 

  2. Eades, P., Whitesides, S.: Drawing graphs in two layers. Theor. Comput. Sci. 131(2), 361–374 (1994). https://doi.org/10.1016/0304-3975(94)90179-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Finocchi, I.: Crossing-constrained hierarchical drawings. J. Discret. Algorithms 4, 299–312 (2006). https://doi.org/10.1016/j.jda.2005.06.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57, 2nd edn. Elsevier, New York (2004). https://doi.org/10.1016/S0167-5060(04)80051-7

    Book  MATH  Google Scholar 

  5. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)

    Article  MathSciNet  Google Scholar 

  6. Kratochvíl, J.: String graphs II. Recognizing string graphs is NP-Hard. J. Combin. Theory Ser. B 52, 67–78 (1991). https://doi.org/10.1016/0095-8956(91)90091-W

    Article  MathSciNet  MATH  Google Scholar 

  7. Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discret. Comput. Geom. 45, 383–399 (2011). https://doi.org/10.1007/s00454-010-9320-x

    Article  MathSciNet  MATH  Google Scholar 

  8. Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification of permutation graphs. Can. J. Math. 23, 160–175 (1971). https://doi.org/10.4153/CJM-1971-016-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Spinrad, J.: On comparability and permutation graphs. SIAM J. Comput. 14(3), 658–670 (1985). https://doi.org/10.1137/0214048

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit A. Diwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diwan, A.A., Roy, B., Ghosh, S.K. (2019). Drawing Bipartite Graphs in Two Layers with Specified Crossings. In: Pal, S., Vijayakumar, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2019. Lecture Notes in Computer Science(), vol 11394. Springer, Cham. https://doi.org/10.1007/978-3-030-11509-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11509-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11508-1

  • Online ISBN: 978-3-030-11509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics