Abstract
Indoor positioning service gives people much better convenience, but its efficiency is affected by the spatial deployment of access points, APs. We propose an algorithm from adaptive particle swarm, APS, and then apply it in APs deployment optimization for fingerprint based indoor positioning. In our method, solutions of APs placement are taken as individuals of one population. Particle swarm method is improved with adaptive technology to ensure the population diversity and also avoid large number of inferior particles. After evolutions, the optimal result is obtained, corresponding to the best solution of APs deployment. The algorithm works well for both single-objective and multi-objective optimizations. Experiments with deployments of 107 iBeacons have been tested in an underground parking lot. Compared with the existing APs placement methods, our APS algorithm can obtain the least indoor positioning error with fixed APs number, while receive the best integrated evaluation considering both positioning error and APs cost with unfixed APs number. The proposed algorithm is easily popularized to the other kinds of indoor spaces and different types of signal sources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, C.C., Su, J., Chu, T.H., Liu, J.W.S.: Building/environment data/information enabled location specificity and indoor positioning. IEEE Internet Things J. 4, 2116–2128 (2017)
Zou, H., Wang, H., Xie, L., Jia, Q.S.: An RFID indoor positioning system by using weighted path loss and extreme learning machine. In: IEEE International Conference on Cyber-physical Systems, Taipei, Taiwan, pp. 66–71 (2013)
Khalajmehrabadi, A., Gatsis, N., Akopian, D.: Modern WLAN fingerprinting indoor positioning methods and deployment challenges. IEEE Commun. Surv. Tutor. 19, 1974–2002 (2017)
Chen, K., Wang, C., Yin, Z., Jiang, H., Tan, G.: Slide: towards fast and accurate mobile fingerprinting for wi-fi indoor positioning systems. IEEE Sens. J. 18, 1213–1223 (2018)
Ma, Y.W., Chen, J.L., Liao, J.J., Tang, C.L.: Intelligent fingerprint-assisted for indoor positioning system. In: IEEE International Workshop on Electromagnetics, vol. 85, pp. 108–109 (2014)
Xia, M., Chen, J., Song, C., Li, N., Chen, K.: The indoor positioning algorithm research based on improved location fingerprinting. In: 27th Chinese Control and Decision Conference, Qingdao, China, pp. 5736–5739 (2015)
Raspopoulos, M.: Multidevice map-constrained fingerprint-based indoor positioning using 3-D ray tracing. IEEE Trans. Instrum. Meas. 67, 466–476 (2018)
Dhillon, S.S., Chakrabarty, K.: Sensor placement for effective coverage and surveillance in distributed sensor networks. In: Wireless Communications and Networking, WCNC, vol. 3, pp. 1609–1614 (2003)
Zhou, M., Qiu, F., Xu, K., Tian, Z., Wu, H.: Error bound analysis of indoor wi-fi location fingerprint based positioning for intelligent access point optimization via fisher information. Comput. Commun. 86, 57–74 (2016)
Du, X., Yang, K.: A map-assisted wifi AP placement algorithm enabling mobile device’s indoor positioning. IEEE Syst. J. 11, 1467–1475 (2017)
Chen, X., Zou, S.: Improved wi-fi indoor positioning based on particle swarm optimization. IEEE Sens. J. 17, 7143–7148 (2017)
Cai, Y., Guan, W., Wu, Y., Xie, C., Chen, Y., Fang, L.: Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization. IEEE Photonics J. 9, 1–20 (2017)
Acknowledgments
This work was supported by the National Key Research and Development Program of China (Project No. 2016YFB0502201).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, J., Li, J., Ai, H., Cai, B. (2018). APs Deployment Optimization for Indoor Fingerprint Positioning with Adaptive Particle Swarm Algorithm. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11336. Springer, Cham. https://doi.org/10.1007/978-3-030-05057-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-05057-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05056-6
Online ISBN: 978-3-030-05057-3
eBook Packages: Computer ScienceComputer Science (R0)