Abstract
To align different views or representations of anatomy is an essential task in computer-assisted surgery (CAS). In this paper, we propose a probabilistic approach to the joint rigid registration problem of multiple generalized point sets. A generalized point set consist of high-dimensional points which include both positional and orientational information (normal vector). A hybrid mixture model (HMM) combining Gaussian and Von-Mises-Fisher distributions is used to model the positional and orientational components of the generalized point sets, respectively. All generalized point sets are jointly registered under the expectation maximization framework. In E-step, the posterior probabilities representing point correspondence confidences are computed. In M-step, the transformation matrices, positional variances and orientational concentration parameters are updated for each point set. We validate the proposed algorithm using the human femur bone surface points extracted from the CT data. The experimental results show that the proposed algorithm outperforms the state-of-the-art ones in terms of the registration accuracy, the robustness to noise and outliers, and the convergence speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baka, N., Metz, C., Schultz, C.J., van Geuns, R.J., Niessen, W.J., van Walsum, T.: Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration. IEEE Trans. Med. Imag. 33(5), 1023–1034 (2014)
Besl, P.J., McKay, N.D., et al.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Billings, S., Taylor, R.: Iterative most likely oriented point registration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_23
Billings, S., Taylor, R.: Generalized iterative most likely oriented-point (G-IMLOP) registration. Int. J. Comput. Assist. Radiol. Surg. 10(8), 1213–1226 (2015)
Billings, S.D., et al.: Anatomically constrained video-CT registration via the V-IMLOP algorithm. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 133–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_16
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Evangelidis, G.D., Horaud, R.: Joint alignment of multiple point sets with batch and incremental expectation-maximization. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1397–1410 (2017)
Horaud, R., Forbes, F., Yguel, M., Dewaele, G., Zhang, J.: Rigid and articulated point registration with expectation conditional maximization. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 587–602 (2011)
Min, Z., Meng, M.Q.H.: General first-order TRE model when using a coordinate reference frame for rigid point-based registration. In: 2017 IEEE 14th International Symposium on Biomedical Imaging, ISBI 2017, pp. 169–173. IEEE (2017)
Min, Z., Ren, H., Meng, M.Q.H.: Estimation of surgical tool-tip tracking error distribution in coordinate reference frame involving pivot calibration uncertainty. Healthc. Technol. Lett. 4(5), 193–198 (2017)
Min, Z., Ren, H., Meng, M.Q.H.: TTRE: a new type of error to evaluate the accuracy of a paired-point rigid registration. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, pp. 953–960. IEEE (2017)
Min, Z., Wang, J., Meng, M.Q.H.: Robust generalized point cloud registration using hybrid mixture model. In: 2018 IEEE International Conference on Robotics and Automation, ICRA, pp. 4812–4818. IEEE (2018)
Ravikumar, N., Gooya, A., Frangi, A.F., Taylor, Z.A.: Generalised coherent point drift for group-wise registration of multi-dimensional point sets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 309–316. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_36
Yaniv, Z.: Registration for orthopaedic interventions. In: Zheng, G., Li, S. (eds.) Computational Radiology for Orthopaedic Interventions. LNCVB, vol. 23, pp. 41–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23482-3_3
Acknowledgments
This project is partially supported by the Hong Kong RGC GRF grants #14210117, and Shenzhen Science and Technology Innovation projects JCYJ20170413161616163 awarded to Max Q.-H. Meng.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Min, Z., Wang, J., Meng, M.QH. (2018). Joint Registration of Multiple Generalized Point Sets. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-04747-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04746-7
Online ISBN: 978-3-030-04747-4
eBook Packages: Computer ScienceComputer Science (R0)