iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-04747-4_16
Joint Registration of Multiple Generalized Point Sets | SpringerLink
Skip to main content

Joint Registration of Multiple Generalized Point Sets

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11167))

Included in the following conference series:

Abstract

To align different views or representations of anatomy is an essential task in computer-assisted surgery (CAS). In this paper, we propose a probabilistic approach to the joint rigid registration problem of multiple generalized point sets. A generalized point set consist of high-dimensional points which include both positional and orientational information (normal vector). A hybrid mixture model (HMM) combining Gaussian and Von-Mises-Fisher distributions is used to model the positional and orientational components of the generalized point sets, respectively. All generalized point sets are jointly registered under the expectation maximization framework. In E-step, the posterior probabilities representing point correspondence confidences are computed. In M-step, the transformation matrices, positional variances and orientational concentration parameters are updated for each point set. We validate the proposed algorithm using the human femur bone surface points extracted from the CT data. The experimental results show that the proposed algorithm outperforms the state-of-the-art ones in terms of the registration accuracy, the robustness to noise and outliers, and the convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baka, N., Metz, C., Schultz, C.J., van Geuns, R.J., Niessen, W.J., van Walsum, T.: Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration. IEEE Trans. Med. Imag. 33(5), 1023–1034 (2014)

    Article  Google Scholar 

  2. Besl, P.J., McKay, N.D., et al.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  3. Billings, S., Taylor, R.: Iterative most likely oriented point registration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_23

    Chapter  Google Scholar 

  4. Billings, S., Taylor, R.: Generalized iterative most likely oriented-point (G-IMLOP) registration. Int. J. Comput. Assist. Radiol. Surg. 10(8), 1213–1226 (2015)

    Article  Google Scholar 

  5. Billings, S.D., et al.: Anatomically constrained video-CT registration via the V-IMLOP algorithm. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 133–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_16

    Chapter  Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  7. Evangelidis, G.D., Horaud, R.: Joint alignment of multiple point sets with batch and incremental expectation-maximization. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1397–1410 (2017)

    Article  Google Scholar 

  8. Horaud, R., Forbes, F., Yguel, M., Dewaele, G., Zhang, J.: Rigid and articulated point registration with expectation conditional maximization. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 587–602 (2011)

    Article  Google Scholar 

  9. Min, Z., Meng, M.Q.H.: General first-order TRE model when using a coordinate reference frame for rigid point-based registration. In: 2017 IEEE 14th International Symposium on Biomedical Imaging, ISBI 2017, pp. 169–173. IEEE (2017)

    Google Scholar 

  10. Min, Z., Ren, H., Meng, M.Q.H.: Estimation of surgical tool-tip tracking error distribution in coordinate reference frame involving pivot calibration uncertainty. Healthc. Technol. Lett. 4(5), 193–198 (2017)

    Article  Google Scholar 

  11. Min, Z., Ren, H., Meng, M.Q.H.: TTRE: a new type of error to evaluate the accuracy of a paired-point rigid registration. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, pp. 953–960. IEEE (2017)

    Google Scholar 

  12. Min, Z., Wang, J., Meng, M.Q.H.: Robust generalized point cloud registration using hybrid mixture model. In: 2018 IEEE International Conference on Robotics and Automation, ICRA, pp. 4812–4818. IEEE (2018)

    Google Scholar 

  13. Ravikumar, N., Gooya, A., Frangi, A.F., Taylor, Z.A.: Generalised coherent point drift for group-wise registration of multi-dimensional point sets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 309–316. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_36

    Chapter  Google Scholar 

  14. Yaniv, Z.: Registration for orthopaedic interventions. In: Zheng, G., Li, S. (eds.) Computational Radiology for Orthopaedic Interventions. LNCVB, vol. 23, pp. 41–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23482-3_3

    Chapter  Google Scholar 

Download references

Acknowledgments

This project is partially supported by the Hong Kong RGC GRF grants #14210117, and Shenzhen Science and Technology Innovation projects JCYJ20170413161616163 awarded to Max Q.-H. Meng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Min, Z., Wang, J., Meng, M.QH. (2018). Joint Registration of Multiple Generalized Point Sets. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds) Shape in Medical Imaging. ShapeMI 2018. Lecture Notes in Computer Science(), vol 11167. Springer, Cham. https://doi.org/10.1007/978-3-030-04747-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04747-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04746-7

  • Online ISBN: 978-3-030-04747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics