Abstract
Sentence Boundary Detection (SBD) has been a major research topic since Automatic Speech Recognition transcripts have been used for further Natural Language Processing tasks like Part of Speech Tagging, Question Answering or Automatic Summarization. But what about evaluation? Do standard evaluation metrics like precision, recall, F-score or classification error; and more important, evaluating an automatic system against a unique reference is enough to conclude how well a SBD system is performing given the final application of the transcript? In this paper we propose Window-based Sentence Boundary Evaluation (WiSeBE), a semi-supervised metric for evaluating Sentence Boundary Detection systems based on multi-reference (dis)agreement. We evaluate and compare the performance of different SBD systems over a set of Youtube transcripts using WiSeBE and standard metrics. This double evaluation gives an understanding of how WiSeBE is a more reliable metric for the SBD task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bohac, M., Blavka, K., Kucharova, M., Skodova, S.: Post-processing of the recognized speech for web presentation of large audio archive. In: 2012 35th International Conference on Telecommunications and Signal Processing (TSP), pp. 441–445. IEEE (2012)
Brum, H., Araujo, F., Kepler, F.: Sentiment analysis for Brazilian portuguese over a skewed class corpora. In: Silva, J., Ribeiro, R., Quaresma, P., Adami, A., Branco, A. (eds.) PROPOR 2016. LNCS (LNAI), vol. 9727, pp. 134–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41552-9_14
Che, X., Wang, C., Yang, H., Meinel, C.: Punctuation prediction for unsegmented transcript based on word vector. In: LREC (2016)
Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)
Fohr, D., Mella, O., Illina, I.: New paradigm in speech recognition: deep neural networks. In: IEEE International Conference on Information Systems and Economic Intelligence (2017)
González-Gallardo, C.E., Hajjem, M., SanJuan, E., Torres-Moreno, J.M.: Transcripts informativeness study: an approach based on automatic summarization. In: Conférence en Recherche d’Information et Applications (CORIA), Rennes, France, May (2018)
González-Gallardo, C.E., Torres-Moreno, J.M.: Sentence boundary detection for French with subword-level information vectors and convolutional neural networks. arXiv preprint arXiv:1802.04559 (2018)
Gotoh, Y., Renals, S.: Sentence boundary detection in broadcast speech transcripts. In: ASR2000-Automatic Speech Recognition: Challenges for the new Millenium ISCA Tutorial and Research Workshop (ITRW) (2000)
Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)
Jamil, N., Ramli, M.I., Seman, N.: Sentence boundary detection without speech recognition: a case of an under-resourced language. J. Electr. Syst. 11(3), 308–318 (2015)
Kiss, T., Strunk, J.: Unsupervised multilingual sentence boundary detection. Comput. Linguist. 32(4), 485–525 (2006)
Klejch, O., Bell, P., Renals, S.: Punctuated transcription of multi-genre broadcasts using acoustic and lexical approaches. In: 2016 IEEE Spoken Language Technology Workshop (SLT), pp. 433–440. IEEE (2016)
Kolář, J., Lamel, L.: Development and evaluation of automatic punctuation for French and english speech-to-text. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)
Kolář, J., Švec, J., Psutka, J.: Automatic punctuation annotation in Czech broadcast news speech. In: SPECOM 2004 (2004)
Liu, Y., Chawla, N.V., Harper, M.P., Shriberg, E., Stolcke, A.: A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput. Speech Lang. 20(4), 468–494 (2006)
Lu, W., Ng, H.T.: Better punctuation prediction with dynamic conditional random fields. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. pp. 177–186. Association for Computational Linguistics (2010)
Meteer, M., Iyer, R.: Modeling conversational speech for speech recognition. In: Conference on Empirical Methods in Natural Language Processing (1996)
Mrozinski, J., Whittaker, E.W., Chatain, P., Furui, S.: Automatic sentence segmentation of speech for automatic summarization. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 1, p. I. IEEE (2006)
Palmer, D.D., Hearst, M.A.: Adaptive sentence boundary disambiguation. In: Proceedings of the Fourth Conference on Applied Natural Language Processing, pp. 78–83. ANLC 1994. Association for Computational Linguistics, Stroudsburg, PA, USA (1994)
Palmer, D.D., Hearst, M.A.: Adaptive multilingual sentence boundary disambiguation. Comput. Linguist. 23(2), 241–267 (1997)
Pearson, K.: Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 58, 240–242 (1895)
Peitz, S., Freitag, M., Ney, H.: Better punctuation prediction with hierarchical phrase-based translation. In: Proceedings of the International Workshop on Spoken Language Translation (IWSLT), South Lake Tahoe, CA, USA (2014)
Rott, M., Červa, P.: Speech-to-text summarization using automatic phrase extraction from recognized text. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 101–108. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45510-5_12
Shriberg, E., Stolcke, A.: Word predictability after hesitations: a corpus-based study. In: Proceedings of the Fourth International Conference on Spoken Language, 1996. ICSLP 1996, vol. 3, pp. 1868–1871. IEEE (1996)
Stevenson, M., Gaizauskas, R.: Experiments on sentence boundary detection. In: Proceedings of the sixth conference on Applied natural language processing, pp. 84–89. Association for Computational Linguistics (2000)
Stolcke, A., Shriberg, E.: Automatic linguistic segmentation of conversational speech. In: Proceedings of the Fourth International Conference on Spoken Language, 1996. ICSLP 1996, vol. 2, pp. 1005–1008. IEEE (1996)
Strassel, S.: Simple metadata annotation specification v5. 0, linguistic data consortium (2003). http://www.ldc.upenn.edu/projects/MDE/Guidelines/SimpleMDE_V5.0.pdf
Tilk, O., Alumäe, T.: Bidirectional recurrent neural network with attention mechanism for punctuation restoration. In: Interspeech 2016 (2016)
Treviso, M.V., Shulby, C.D., Aluisio, S.M.: Evaluating word embeddings for sentence boundary detection in speech transcripts. arXiv preprint arXiv:1708.04704 (2017)
Ueffing, N., Bisani, M., Vozila, P.: Improved models for automatic punctuation prediction for spoken and written text. In: Interspeech, pp. 3097–3101 (2013)
Wang, W., Tur, G., Zheng, J., Ayan, N.F.: Automatic disfluency removal for improving spoken language translation. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 5214–5217. IEEE (2010)
Xu, C., Xie, L., Huang, G., Xiao, X., Chng, E.S., Li, H.: A deep neural network approach for sentence boundary detection in broadcast news. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)
Yu, D., Deng, L.: Automatic Speech Recognition. Springer, London (2015). https://doi.org/10.1007/978-1-4471-5779-3
Acknowledgments
We would like to acknowledge the support of CHIST-ERA for funding this work through the Access Multilingual Information opinionS (AMIS), (France - Europe) project.
We also like to acknowledge the support given by the Prof. Hanifa Boucheneb from VERIFORM Laboratory (École Polytechnique de Montréal).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
González-Gallardo, CE., Torres-Moreno, JM. (2018). WiSeBE: Window-Based Sentence Boundary Evaluation. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Computational Intelligence. MICAI 2018. Lecture Notes in Computer Science(), vol 11289. Springer, Cham. https://doi.org/10.1007/978-3-030-04497-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-04497-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04496-1
Online ISBN: 978-3-030-04497-8
eBook Packages: Computer ScienceComputer Science (R0)