Abstract
Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhatt, S., et al.: The global distribution and burden of dengue. Nature 496(7446), 504–507 (2013). https://doi.org/10.1038/nature12060, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651993/
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)
Caglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M.R., Bordi, L.: Chikungunya virus infection: an overview. New Microbiologica 36(3), 211–227 (2013). http://www.newmicrobiologica.org/PUB/allegati_pdf/2013/3/211.pdf
Caicedo, W., Quintana, M., Pinzón, H.: Differential diagnosis of hemorrhagic fevers using ARTMAP. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 221–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34654-5_23
Caicedo-Torres, W., Paternina, Á., Pinzón, H.: Machine learning models for early dengue severity prediction. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 247–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_21
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018
Faisal, T., Taib, M.N., Ibrahim, F.: Neural network diagnostic system for dengue patients risk classification. J. Med. Syst. 36(2), 661–676 (2012). https://doi.org/10.1007/s10916-010-9532-x
Shameem Fathima, A., Manimeglai, D.: Analysis of significant factors for dengue infection prognosis using the random forest classifier. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 6(2) (2015). https://doi.org/10.14569/IJACSA.2015.060235
Fullerton, L.M., Dickin, S.K., Schuster-Wallace, C.J.: Mapping global vulnerability to dengue using the water associated disease index. Technical report, United Nations University (2014)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org
Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15(7), 1667–1689 (2003). https://doi.org/10.1162/089976603321891855
Khan, M.I.H., et al.: Factors predicting severe dengue in patients with dengue fever. Mediterr. J. Hematol. Infect. Diseases 5(1) (2013)
Laoprasopwattana, K., Kaewjungwad, L., Jarumanokul, R., Geater, A.: Differential diagnosis of chikungunya, dengue viral infection and other acute febrile illnesses in children. Pediatr. Infect. Disease J. 31(5) (2012). http://journals.lww.com/pidj/Fulltext/2012/05000/Differential_Diagnosis_of_Chikungunya,_Dengue.8.aspx
Lee, V.J., et al.: Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults. PLoS Negl. Trop. Diseases 6(9), 1–9 (2012). https://doi.org/10.1371/journal.pntd.0001786
Lee, V.J., et al.: Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults. PLoS Negl. Trop. Diseases 6(9), e1786 (2012). https://doi.org/10.1371/journal.pntd.0001786, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459852/
Mardekian, S.K., Roberts, A.L.: Diagnostic options and challenges for dengue and chikungunya viruses. BioMed. Res. Int. 2015, 834371 (2015). https://doi.org/10.1155/2015/834371. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609775/
McCullagh, P., Nelder, J.: Generalized Linear Models. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, 2nd edn. Taylor & Francis, Boa Raton (1989). https://books.google.co.uk/books?id=h9kFH2_FfBkC
Pan American Health Organization: Chikungunya: Statistical Data (2014). http://www.paho.org/hq/index.php?option=com_topics&view=readall&cid=5932&Itemid=40931&lang=en. Accessed 29 Feb 2016
Paternina-Caicedo, A., et al.: Features of dengue and chikungunya infections of Colombian children under 24 months of age admitted to the emergency department. J. Trop. Pediatr. (2017). https://doi.org/10.1093/tropej/fmx024
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Potts, J.A., et al.: Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl. Trop. Dis. 4(8), e769 (2010)
World Health Organization: Chikungunya (2015). http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed 29 Feb 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Caicedo-Torres, W., Paternina-Caicedo, Á., Pinzón-Redondo, H., Gutiérrez, J. (2018). Differential Diagnosis of Dengue and Chikungunya in Colombian Children Using Machine Learning. In: Simari, G.R., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science(), vol 11238. Springer, Cham. https://doi.org/10.1007/978-3-030-03928-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-03928-8_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03927-1
Online ISBN: 978-3-030-03928-8
eBook Packages: Computer ScienceComputer Science (R0)