iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-03928-8_15
Differential Diagnosis of Dengue and Chikungunya in Colombian Children Using Machine Learning | SpringerLink
Skip to main content

Differential Diagnosis of Dengue and Chikungunya in Colombian Children Using Machine Learning

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2018 (IBERAMIA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11238))

Included in the following conference series:

Abstract

Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhatt, S., et al.: The global distribution and burden of dengue. Nature 496(7446), 504–507 (2013). https://doi.org/10.1038/nature12060, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651993/

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    Google Scholar 

  3. Caglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M.R., Bordi, L.: Chikungunya virus infection: an overview. New Microbiologica 36(3), 211–227 (2013). http://www.newmicrobiologica.org/PUB/allegati_pdf/2013/3/211.pdf

  4. Caicedo, W., Quintana, M., Pinzón, H.: Differential diagnosis of hemorrhagic fevers using ARTMAP. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 221–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34654-5_23

    Chapter  Google Scholar 

  5. Caicedo-Torres, W., Paternina, Á., Pinzón, H.: Machine learning models for early dengue severity prediction. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 247–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_21

    Chapter  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  7. Faisal, T., Taib, M.N., Ibrahim, F.: Neural network diagnostic system for dengue patients risk classification. J. Med. Syst. 36(2), 661–676 (2012). https://doi.org/10.1007/s10916-010-9532-x

    Article  Google Scholar 

  8. Shameem Fathima, A., Manimeglai, D.: Analysis of significant factors for dengue infection prognosis using the random forest classifier. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 6(2) (2015). https://doi.org/10.14569/IJACSA.2015.060235

  9. Fullerton, L.M., Dickin, S.K., Schuster-Wallace, C.J.: Mapping global vulnerability to dengue using the water associated disease index. Technical report, United Nations University (2014)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  11. Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15(7), 1667–1689 (2003). https://doi.org/10.1162/089976603321891855

    Article  Google Scholar 

  12. Khan, M.I.H., et al.: Factors predicting severe dengue in patients with dengue fever. Mediterr. J. Hematol. Infect. Diseases 5(1) (2013)

    Google Scholar 

  13. Laoprasopwattana, K., Kaewjungwad, L., Jarumanokul, R., Geater, A.: Differential diagnosis of chikungunya, dengue viral infection and other acute febrile illnesses in children. Pediatr. Infect. Disease J. 31(5) (2012). http://journals.lww.com/pidj/Fulltext/2012/05000/Differential_Diagnosis_of_Chikungunya,_Dengue.8.aspx

  14. Lee, V.J., et al.: Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults. PLoS Negl. Trop. Diseases 6(9), 1–9 (2012). https://doi.org/10.1371/journal.pntd.0001786

    Article  Google Scholar 

  15. Lee, V.J., et al.: Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults. PLoS Negl. Trop. Diseases 6(9), e1786 (2012). https://doi.org/10.1371/journal.pntd.0001786, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459852/

  16. Mardekian, S.K., Roberts, A.L.: Diagnostic options and challenges for dengue and chikungunya viruses. BioMed. Res. Int. 2015, 834371 (2015). https://doi.org/10.1155/2015/834371. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609775/

  17. McCullagh, P., Nelder, J.: Generalized Linear Models. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, 2nd edn. Taylor & Francis, Boa Raton (1989). https://books.google.co.uk/books?id=h9kFH2_FfBkC

  18. Pan American Health Organization: Chikungunya: Statistical Data (2014). http://www.paho.org/hq/index.php?option=com_topics&view=readall&cid=5932&Itemid=40931&lang=en. Accessed 29 Feb 2016

  19. Paternina-Caicedo, A., et al.: Features of dengue and chikungunya infections of Colombian children under 24 months of age admitted to the emergency department. J. Trop. Pediatr. (2017). https://doi.org/10.1093/tropej/fmx024

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  21. Potts, J.A., et al.: Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators. PLoS Negl. Trop. Dis. 4(8), e769 (2010)

    Article  Google Scholar 

  22. World Health Organization: Chikungunya (2015). http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed 29 Feb 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Caicedo-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Cite this paper

Caicedo-Torres, W., Paternina-Caicedo, Á., Pinzón-Redondo, H., Gutiérrez, J. (2018). Differential Diagnosis of Dengue and Chikungunya in Colombian Children Using Machine Learning. In: Simari, G.R., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science(), vol 11238. Springer, Cham. https://doi.org/10.1007/978-3-030-03928-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03928-8_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03927-1

  • Online ISBN: 978-3-030-03928-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics