iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-03098-8_17
Runtime Norm Revision Using Bayesian Networks | SpringerLink
Skip to main content

Runtime Norm Revision Using Bayesian Networks

  • Conference paper
  • First Online:
PRIMA 2018: Principles and Practice of Multi-Agent Systems (PRIMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11224))

Abstract

To guarantee the overall intended objectives of a multiagent systems, the behavior of individual agents should be controlled and coordinated. Such coordination can be achieved, without limiting the agents’ autonomy, via runtime norm enforcement. However, due to the dynamicity and uncertainty of the environment, the enforced norms can be ineffective. In this paper, we propose a runtime supervision mechanism that automatically revises norms when their enforcement appears to be ineffective. The decision to revise norms is taken based on a Bayesian Network that gives information about the likelihood of achieving the overall intended system objectives by enforcing the norms. Norms can be revised in three ways: relaxation, strengthening, and alteration. We evaluate the supervision mechanism on an urban smart traffic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When we refer to nodes of a specific type we use the corresponding notation convention, e.g., N refers to a node in \(\mathbf N \), \(\mathbf c \) refers to an assignment of values to nodes in \(\mathbf C \), \(\mathbf N _{\textit{viol}}\) refers to an assignment of value violated to a set of norm nodes \(\mathbf N \), etc.

  2. 2.

    In the following we omit the context from the conditional probabilities since implicit.

  3. 3.

    Actual trip time over the theoretical time w.r.t. to length and speed limits.

  4. 4.

    Revising one norm leads to a distance of 2–3 from the original configuration, and each configuration has 10%–20% of all configurations in its neighborhood.

  5. 5.

    We obtained 12 variants from pairwise testing with variables: time (day, night), weather (normal, extreme), CNS (none, adaptive, static), and junctions (none, adaptive lights, static lights, priority lanes). We grouped those variants in 4 groups (one per context) and we generated all their combinations to obtain 81 configurations.

References

  1. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hoboken (2009)

    Google Scholar 

  2. Bulling, N., Dastani, M.: Norm-based mechanism design. Artif. Intell. 239, 97–142 (2016)

    Article  MathSciNet  Google Scholar 

  3. Testerink, B., Dastani, M., Bulling, N.: Distributed controllers for norm enforcement. In: Proceedings of ECAI, pp. 751–759 (2016)

    Google Scholar 

  4. Alechina, N., Bulling, N., Dastani, M., Logan, B.: Practical run-time norm enforcement with bounded lookahead. In: Proceedings of AAMAS, pp. 443–451 (2015)

    Google Scholar 

  5. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements and design engineering. In: ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 53–62. ACM (2004)

    Google Scholar 

  6. Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements evolution: from assumptions to reality. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD. LNBIP, vol. 81, pp. 372–382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21759-3_27

    Chapter  Google Scholar 

  7. Knobbout, M., Dastani, M., Meyer, J.C.: A dynamic logic of norm change. In: Proceedings of ECAI, pp. 886–894 (2016)

    Google Scholar 

  8. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd internat. edn. Pearson Education (2010)

    Google Scholar 

  9. Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L., Cowell, R.G.: Bayesian analysis in expert systems. Stat. Sci. 8(3), 219–247 (1993)

    MathSciNet  Google Scholar 

  10. Kwisthout, J.: Most probable explanations in bayesian networks: complexity and tractability. Int. J. Approx. Reason. 52(9), 1452–1469 (2011)

    Article  MathSciNet  Google Scholar 

  11. Schmid, S., Gerostathopoulos, I., Prehofer, C., Bures, T.: Self-adaptation based on big data analytics: a model problem and tool. In: Proceedings of SEAMS, pp. 102–108 (2017)

    Google Scholar 

  12. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.: Normative multi-agent programs and their logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008. LNCS (LNAI), vol. 5605, pp. 16–31. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05301-6_2

    Chapter  Google Scholar 

  13. Knobbout, M., Dastani, M.: Reasoning under compliance assumptions in normative multiagent systems. In: Proceedings of AAMAS, pp. 331–340 (2012)

    Google Scholar 

  14. Alechina, N., Dastani, M., Logan, B.: Reasoning about normative update. In: Proceedings of IJCAI, pp. 20–26 (2013)

    Google Scholar 

  15. Knobbout, M., Dastani, M., Meyer, J.-J.C.: Reasoning about dynamic normative systems. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 628–636. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_46

    Chapter  Google Scholar 

  16. Aucher, G., Grossi, D., Herzig, A., Lorini, E.: Dynamic context logic. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 15–26. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04893-7_2

    Chapter  Google Scholar 

  17. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annulments in defeasible logic. Log. J. IGPL 18(1), 157–194 (2010)

    Article  MathSciNet  Google Scholar 

  18. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors. In: Proceedings of AAMAS, pp. 117–124 (2014)

    Google Scholar 

  19. Cranefield, S., Meneguzzi, F., Oren, N., Savarimuthu, B.T.R.: A Bayesian approach to norm identification. In: Proceedings of ECAI, pp. 622–629 (2016)

    Google Scholar 

  20. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Validating goal models via Bayesian networks. In: Proceedings of AIRE@RE (2018)

    Google Scholar 

  21. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems. Technical report CUED/F-INFENG/TR-166, vol. 37. University of Cambridge, Cambridge (1994)

    Google Scholar 

  22. van der Gaag, L.C., Renooij, S., Coupé, V.M.: Sensitivity analysis of probabilistic networks. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic Graphical Models. STUDFUZZ, pp. 103–124. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68996-6_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Dell’Anna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dell’Anna, D., Dastani, M., Dalpiaz, F. (2018). Runtime Norm Revision Using Bayesian Networks. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds) PRIMA 2018: Principles and Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science(), vol 11224. Springer, Cham. https://doi.org/10.1007/978-3-030-03098-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03098-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03097-1

  • Online ISBN: 978-3-030-03098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics