iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-01722-4_5
Graph Databases in Molecular Biology | SpringerLink
Skip to main content

Graph Databases in Molecular Biology

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2018)

Abstract

In recent years, the increase in the amount of data generated in basic social practices and specifically in all fields of research has boosted the rise of new database models, many of which have been employed in the field of Molecular Biology. NoSQL graph databases have been used in many types of research with biological data, especially in cases where data integration is a determining factor. For the most part, they are used to represent relationships between data along two main lines: (i) to infer knowledge from existing relationships; (ii) to represent relationships from a previous data knowledge. In this work, a short history in a timeline of events introduces the mutual evolution of databases and Molecular Biology. We present how graph databases have been used in Molecular Biology research using High Throughput Sequencing data, and discuss their role and the open field of research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.cytoscape.org.

  2. 2.

    http://statepigen.sci-sym.dcu.ie.

References

  1. Angles, R., et al.: Benchmarking database systems for social network applications. In: First International Workshop on Graph Data Management Experiences and Systems, p. 15. ACM (2013)

    Google Scholar 

  2. Bachman, C.W.: Integrated data store. DPMA Q. 1(2), 10–30 (1965)

    Google Scholar 

  3. Bachman, C.W.: The origin of the integrated data store (IDS): the first direct-access dbms. IEEE Ann. History Comput. 31, 42–54 (2009)

    Article  MathSciNet  Google Scholar 

  4. Balaur, I., et al.: EpigeNet: a graph database of interdependencies between genetic and epigenetic events in colorectal cancer. J. Comput. Biol. 24, 969–980 (2017)

    Article  Google Scholar 

  5. Berners-Lee, T., et al.: World-wide web: the information universe. Internet Res. 20(4), 461–471 (2010)

    Article  Google Scholar 

  6. Bonnici, V., et al.: Comprehensive reconstruction and visualization of non-coding regulatory networks in human. Front. Bioeng. Biotechnol. 2, 69 (2014)

    Article  Google Scholar 

  7. Bonnici, V., et al.: Arena-Idb: a platform to build human non-coding RNA interaction networks, pp. 1–13 (2018)

    Article  Google Scholar 

  8. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Article  Google Scholar 

  9. Corbacho, J., et al.: Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PloS ONE 8(3), e58363 (2013)

    Article  MathSciNet  Google Scholar 

  10. Corbellini, A., et al.: Persisting big-data: the NoSQL landscape. Inf. Syst. 63, 1–23 (2017)

    Article  Google Scholar 

  11. Costa, R.L., et al.: GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis. PeerJ 5, e3509 (2017)

    Article  Google Scholar 

  12. Crick, F.H., et al.: General nature of the genetic code for proteins. Nature 192(4809), 1227–1232 (1961)

    Article  Google Scholar 

  13. Deen, S.M.: Fundamentals of Data Base Systems. Springer, Heidelberg (1977). https://doi.org/10.1007/978-1-349-15843-0

    Book  Google Scholar 

  14. Fabregat, A., et al.: Reactome graph database: efficient access to complex pathway data. PLoS Comput. Biol. 14(1), 1–13 (2018)

    Article  Google Scholar 

  15. Fry, J.P., Sibley, E.H.: Evolution of data-base management systems. ACM Comput. Surv. (CSUR) 8(1), 7–42 (1976)

    Article  Google Scholar 

  16. Have, C.T., Jensen, L.J.: Are graph databases ready for bioinformatics? Bioinformatics 29(24), 3107 (2013)

    Article  Google Scholar 

  17. Henkel, R., Wolkenhauer, O., Waltemath, D.: Combining computational models, semantic annotations and simulation experiments in a graph database. Database 2015 (2015)

    Google Scholar 

  18. Hutchison III, C.A.: Dna sequencing: bench to bedside and beyond. Nucl. Acids Res. 35(18), 6227–6237 (2007)

    Article  Google Scholar 

  19. Lander, E.S.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)

    Article  Google Scholar 

  20. Lysenko, A., et al.: Representing and querying disease networks using graph databases. BioData Min. 9, 23 (2016)

    Article  Google Scholar 

  21. Martin, R.G., et al.: Ribonucleotide composition of the genetic code. Biochem. Biophys. Res. Commun. 6(6), 410–414 (1962)

    Article  Google Scholar 

  22. McCallum, D., Smith, M.: Computer processing of dna sequence data. J. Mol. Biol. 116, 29–30 (1977)

    Article  Google Scholar 

  23. Messaoudi, C., Mhand, M.A., Fissoune, R.: A performance study of NoSQL stores for biomedical data NoSQL databases: an overview, November 2017 (2018)

    Google Scholar 

  24. Messina, A., Pribadi, H., Stichbury, J., Bucci, M., Klarman, S., Urso, A.: BioGrakn: a knowledge graph-based semantic database for biomedical sciences. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 299–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_28

    Chapter  Google Scholar 

  25. O’Neill, J.T.: MUMPS language standard, vol. 118. US Department of Commerce, National Bureau of Standards (1976)

    Google Scholar 

  26. Pareja-Tobes, P., et al.: Bio4j: a high-performance cloud-enabled graph-based data platform. bioRxiv (2015)

    Google Scholar 

  27. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc, Sebastopol (2013)

    Google Scholar 

  28. Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94(3), 441IN19447–441IN20448 (1975)

    Article  Google Scholar 

  29. Shreeve, J.: The Genome War: How Craig Venter Tried to Capture the Code of Life and Save the World. Random House Digital Inc., Manhattan (2005)

    Google Scholar 

  30. Silva, W.M.C.D., et al.: A terpenoid metabolic network modelled as graph database. Int. J. Data Min. Bioinform. 18(1), 74–90 (2017)

    Article  Google Scholar 

  31. Srinivasa, S.: Data, storage and index models for graph databases. In: Sakr, S., Pardede, E. (eds.) Graph Data Management, pp. 47–70. IGI Global, Hershey (2011)

    Google Scholar 

  32. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Biol. 13(7), e1002195 (2015)

    Article  Google Scholar 

  33. Summer, G., et al.: cyNeo4j: connecting neo4j and cytoscape. Bioinformatics 31(23), 3868–3869 (2015)

    Google Scholar 

  34. Summer, G., et al.: The network library: a framework to rapidly integrate network biology resources. Bioinformatics 32(17), i473–i478 (2016)

    Article  Google Scholar 

  35. Swainston, N., et al.: biochem4j: Integrated and extensible biochemical knowledge through graph databases. PloS ONE 12(7), e0179130 (2017)

    Article  Google Scholar 

  36. Szklarczyk, D., et al.: The string database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucl. Acids Res. 45(D1), D362–D368 (2017)

    Article  Google Scholar 

  37. Van Erven, G., Silva, W., Carvalho, R., Holanda, M.: GRAPHED: a graph description diagram for graph databases. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018. AISC, vol. 745, pp. 1141–1151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77703-0_111

    Chapter  Google Scholar 

  38. Venter, J.C., et al.: The sequence of the human genome. Science 291(5507), 1304–1351 (2001)

    Article  Google Scholar 

  39. Watson, J.D., Crick, F.H.: A structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)

    Article  Google Scholar 

  40. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016). https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  41. Wu, R., Taylor, E.: Nucleotide sequence analysis of DNA: II. Complete nucleotide sequence of the cohesive ends of bacteriophage \(\lambda \) DNA. J. Mol. Biol. 57(3), 491–511 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

W. M. C. S. kindly thanks CAPES and IFG. M. E. M. T. W. thanks CNPq (Project 308524/2015-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldeyr M. C. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, W.M.C., Wercelens, P., Walter, M.E.M.T., Holanda, M., Brígido, M. (2018). Graph Databases in Molecular Biology. In: Alves, R. (eds) Advances in Bioinformatics and Computational Biology. BSB 2018. Lecture Notes in Computer Science(), vol 11228. Springer, Cham. https://doi.org/10.1007/978-3-030-01722-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01722-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01721-7

  • Online ISBN: 978-3-030-01722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics