iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-01470-4_12
Path Bundling in Modular Bipartite Networks | SpringerLink
Skip to main content

Path Bundling in Modular Bipartite Networks

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017)

Abstract

Path bundling consists in compounding multiple routes in a polygonal map to minimize connectivity in a network structure. Being closely related to the Steiner Tree Problem, yet with a different scope, path bundling aims at computing minimal trees while preserving network connectivity among origin-destination pairs to allow the joint transport of information, goods, and people. In this paper, we propose a method to tackle the path bundling problem in modular bipartite networks by using a two-layer optimization with a convex representation. Exhaustive computational experiments in diverse polygonal domains considering convex and non-convex geometry show the feasibility and the efficiency of the proposed approach, outperforming the state of the art in generating comparatively shorter trees, and improved scalability as a function of edges in bipartite networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(5\times 5\times 5\times 2\).

  2. 2.

    \(250\times 2000\).

References

  1. Parque, V., Miura, S., Miyashita, T.: Optimization of ZigBee networks using bundled routes. In: International Conference on Advanced Mechatronics (ICAM) (2015)

    Google Scholar 

  2. Hermansson, T., Bohlin, R., Carlson, J., Söderberg, R.: Automatic routing of flexible 1D components with functional and manufacturing constraints. Comput.-Aided Des. 79, 27–35 (2016)

    Article  MathSciNet  Google Scholar 

  3. Li, W.T., Liu, Y.C.: Dynamic coverage control for mobile robot network with limited and nonidentical sensory ranges. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 775–780 (2017)

    Google Scholar 

  4. Kantaros, Y., Zavlanos, M.M.: Global planning for multi-robot communication networks in complex environments. IEEE Trans. Robot. 32, 1045–1061 (2016)

    Article  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  6. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  7. Chazelle, B.: A theorem on polygon cutting with applications. In: Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, pp. 339–349 (1982)

    Google Scholar 

  8. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  9. Kallmann, M.: Path planning in triangulations. In: Proceedings of the Workshop on Reasoning, Representation, and Learning in Computer Games, IJCAI, pp. 49–54 (2005)

    Google Scholar 

  10. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Networks 14(3), 393–410 (1984)

    Article  MathSciNet  Google Scholar 

  11. Falud, R.: Building Wireless Sensor Networks, 4th edn. O’Reilly Media, Sebastapol (2014)

    Google Scholar 

  12. Wightman, P., Labardor, M.: A family of simple distributed minimum connected dominating set-based topology construction algorithms. J. Netw. Comput. Appl. 34, 1997–2010 (2011)

    Article  Google Scholar 

  13. Torkestani, J.A.: An energy-efficient topology construction algorithm for wireless sensor networks. Comput. Netw. 57, 1714–1725 (2013)

    Article  Google Scholar 

  14. Panigrahi, N., Khilar, P.M.: An evolutionary based topological optimization strategy for consensus based clock synchronization protocols in wireless sensor network. Swarm Evol. Comput. 22, 66–85 (2015)

    Article  Google Scholar 

  15. Szurley, J., Bertrand, A., Moonen, M.: An evolutionary based topological optimization strategy for consensus based clock synchronization protocols in wireless sensor network. Signal Process. 117, 44–60 (2015)

    Article  Google Scholar 

  16. Singh, S.P., Sharma, S.: A survey on cluster based routing protocols in wireless sensor networks. Procedia Comput. Sci. 45, 687–695 (2015)

    Article  Google Scholar 

  17. Cui, W., Zhou, H., Qu, H., Wong, P.C.: Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph. 14, 1277–1284 (2008)

    Article  Google Scholar 

  18. Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network data. IEEE Trans. Vis. Comput. Graph. 17(12), 2354–2363 (2011)

    Article  Google Scholar 

  19. Ersoy, O., Hurther, C., Paulovich, F., Cabtareiro, G., Telea, A.: Skeleton-based edge bundlig for graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2364–2373 (2011)

    Article  Google Scholar 

  20. Gansner, E.R., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: IEEE Pacific Visualization Symposium, pp. 187–194 (2011)

    Google Scholar 

  21. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Euro-graphics, IEEE-VGTC Symposium on Visualization (2009)

    Google Scholar 

  22. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. Eurographics ACM Trans. Graph. 21(4), 807–832 (2002)

    Article  MathSciNet  Google Scholar 

  23. Parque, V., Miura, S., Miyashita, T.: Computing path bundles in bipartite networks. In: SIMULTECH 2017 - Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 422–427. SciTePress (2017)

    Google Scholar 

  24. Jones, D.R.: Direct Global Optimization Algorithm. Encyclopedia of Optimization. Kluwer Academic Publishers (1999)

    Google Scholar 

  25. Guo, S.-M., Yang, C.-C., Hsu, P.H., Tsai, J.S.H.: Improving Differential Evolution With a Successful-Parent-Selecting Framework. IEEE Trans. Evol. Comput.19, 717–730 (2015)

    Article  Google Scholar 

  26. Qu, B.Y., Liang, J.J., Suganthan, P.N.: Niching particle swarm optimization with local search for multi-modal optimization. Inf. Sci. 197, 131–143 (2012)

    Article  Google Scholar 

  27. Sutton, A.M., Lunacek, M., Whitley, L.D.: Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of 9th Annual Conference GECCO, July, pp. 1428–1435 (2007)

    Google Scholar 

  28. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: Proceedings of IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 71–78 (2013)

    Google Scholar 

  29. Parque, V., Kobayashi, M., Higashi, M.: Bijections for the numeric representation of labeled graphs. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 447–452 (2014)

    Google Scholar 

  30. Parque, V., Miyashita, T.: On succinct representation of directed graphs. In: IEEE International Conference on Big Data and Smart Computing, pp. 199–205 (2017)

    Google Scholar 

  31. Parque, V., Miyashita, T.: On k-subset sum using enumerative encoding. In: 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 81–86 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Parque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parque, V., Miura, S., Miyashita, T. (2019). Path Bundling in Modular Bipartite Networks. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications . SIMULTECH 2017. Advances in Intelligent Systems and Computing, vol 873. Springer, Cham. https://doi.org/10.1007/978-3-030-01470-4_12

Download citation

Publish with us

Policies and ethics