iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-01418-6_68
Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval-Valued Data | SpringerLink
Skip to main content

Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval-Valued Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

Symbolic Data Analysis provides suitable new types of variable that can take into account the variability present in the observed measurements. This paper proposes a partitioning fuzzy clustering algorithm for interval-valued data based on suitable adaptive Euclidean distance and entropy regularization. The proposed method optimizes an objective function by alternating three steps aiming to compute the fuzzy cluster representatives, the fuzzy partition, as well as relevance weights for the interval-valued variables. Experiments on synthetic and real datasets corroborate the usefulness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, vol. 463. ACM press, New York (1999)

    Google Scholar 

  2. Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-57155-8

    Book  MATH  Google Scholar 

  3. Boudou, A., Ribeyre, F.: Mercury in the food web: accumulation and transfer mechanisms. Met. Ions Biol. Syst. 34, 289–320 (1997)

    Google Scholar 

  4. de Carvalho, F.D.A.: Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognit. Lett. 28(4), 423–437 (2007)

    Article  Google Scholar 

  5. Diday, E.: Classification automatique avec distances adaptatives. RAIRO Inform. Comput. Sci. 11(4), 329–349 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Duarte Silva, P., Brito, P.: Model and analyse interval data. https://cran.r-project.org/web/packages/MAINT.Data/index.html. Accessed 27 Apr 2018

  7. Frigui, H., Hwang, C., Rhee, F.C.H.: Clustering and aggregation of relational data with applications to image database categorization. Pattern Recognit. 40(11), 3053–3068 (2007)

    Article  Google Scholar 

  8. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recognit. 37(3), 567–581 (2004)

    Article  Google Scholar 

  9. Guru, D., Kiranagi, B.B., Nagabhushan, P.: Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognit. Lett. 25(10), 1203–1213 (2004)

    Article  Google Scholar 

  10. Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

    Article  Google Scholar 

  11. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  12. Hullermeier, E., Rifqi, M.: A fuzzy variant of the rand index for comparing clustering structures. In: Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, IFSA-EUSFLAT 2009 (2009)

    Google Scholar 

  13. Ichino, M., Yaguchi, H.: Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Trans. Syst. Man Cybern. 24(4), 698–708 (1994)

    Article  MathSciNet  Google Scholar 

  14. Irpino, A., Verde, R., de Carvalho, F.A.T.: Fuzzy clustering of distributional data with automatic weighting of variable components. Inf. Sci. 406–407, 248–268 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  16. Tsai, C., Chiu, C.: Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm. Comput. Stat. Data Anal. 52, 4658–4672 (2008)

    Article  MathSciNet  Google Scholar 

  17. Yang, M.S., Hwang, P.Y., Chen, D.H.: Fuzzy clustering algorithms for mixed feature variables. Fuzzy Sets Syst. 141(2), 301–317 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors would like to thank CNPq and FACEPE (Brazilian agencies) for their financial support and the anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Inés Rizo Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez, S.I.R., de Carvalho, F.d.A.T. (2018). Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval-Valued Data. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics