iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-01418-6_67
Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation | SpringerLink
Skip to main content

Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

The conventional Gaussian kernel-based fuzzy c-means clustering algorithm has widely demonstrated its superiority to the conventional fuzzy c-means when the data sets are arbitrarily shaped, and not linearly separable. However, its performance is very dependent on the estimation of the bandwidth parameter of the Gaussian kernel function. Usually this parameter is estimated once and for all. This paper presents a Gaussian fuzzy c-means with kernelization of the metric which depends on a vector of bandwidth parameters, one for each variable, that are computed automatically. Experiments with data sets of the UCI machine learning repository corroborate the usefulness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine (1998). http://www.ics.uci.edu/mlearn/MLRepository.html

  3. Camastra, F., Verri, A.: A novel kernel method for clustering. IEEE Trans. Neural Netw. 27, 801–804 (2005)

    Google Scholar 

  4. Caputo, B., Sim, K., Furesjo, F., Smola, A.: Appearence-based object recognition using SVMs: which kernel should I use? In: Proceedings of NIPS Workshop on Statistical methods for Computational Experiments in Visual Processing and Computer Vision (2002)

    Google Scholar 

  5. de Carvalho, F.A.T., Ferreira, M.R.P., Simões, E.C.: A Gaussian kernel-based clustering algorithm with automatic hyper-parameters computation. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 393–400. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_45

    Chapter  Google Scholar 

  6. Cleuziou, G., Moreno, J.: Kernel methods for point symmetry-based clustering. Pattern Recogn. 48, 2812–2830 (2015)

    Article  Google Scholar 

  7. Diday, E., Govaert, G.: Classification automatique avec distances adaptatives. R.A.I.R.O. Inform. Comput. Sci. 11(4), 329–349 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Fauvel, M., Chanussot, J., Benediktsson, J.: Parsimonious mahalanobis kernel for the classification of high dimensional data. Pattern Recogn. 46, 845–854 (2013)

    Article  Google Scholar 

  9. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recogn. 41, 176–190 (2008)

    Article  Google Scholar 

  10. Frigui, H., Hwanga, C., Rhee, F.C.H.: Clustering and aggregation of relational data with applications to image database categorization. Pattern Recogn. 40, 3053–3068 (2007)

    Article  Google Scholar 

  11. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

    Article  Google Scholar 

  12. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  13. Huellermeier, E., Rifki, M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: a generalization of the rand index and related measures. IEEE Trans. Fuzzy Syst. 20, 546–556 (2012)

    Article  Google Scholar 

  14. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651–666 (2010)

    Article  Google Scholar 

  15. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  16. Manning, C., Raghavan, P., Schuetze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  17. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learn. 52(3), 217–237 (2003)

    Article  Google Scholar 

  18. Mueller, K.R., Mika, S., Raetsch, G., Tsuda, K., Schoelkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12, 181–202 (2001)

    Article  Google Scholar 

  19. Pal, N.R.: What and when can we gain from the kernel versions of c-means algorithm? IEEE Trans. Fuzzy Syst. 22, 363–369 (2014)

    Article  Google Scholar 

  20. Tsai, C., Chiu, C.: Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm. Comput. Stat. Data Anal. 52, 4658–4672 (2008)

    Article  MathSciNet  Google Scholar 

  21. Xu, R., Wunusch, D.I.I.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their careful revision, and CNPq and FACEPE (Brazilian agencies) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco de A. T. de Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Carvalho, F.d.A.T., Santana, L.V.C., Ferreira, M.R.P. (2018). Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics