Abstract
The conventional Gaussian kernel-based fuzzy c-means clustering algorithm has widely demonstrated its superiority to the conventional fuzzy c-means when the data sets are arbitrarily shaped, and not linearly separable. However, its performance is very dependent on the estimation of the bandwidth parameter of the Gaussian kernel function. Usually this parameter is estimated once and for all. This paper presents a Gaussian fuzzy c-means with kernelization of the metric which depends on a vector of bandwidth parameters, one for each variable, that are computed automatically. Experiments with data sets of the UCI machine learning repository corroborate the usefulness of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine (1998). http://www.ics.uci.edu/mlearn/MLRepository.html
Camastra, F., Verri, A.: A novel kernel method for clustering. IEEE Trans. Neural Netw. 27, 801–804 (2005)
Caputo, B., Sim, K., Furesjo, F., Smola, A.: Appearence-based object recognition using SVMs: which kernel should I use? In: Proceedings of NIPS Workshop on Statistical methods for Computational Experiments in Visual Processing and Computer Vision (2002)
de Carvalho, F.A.T., Ferreira, M.R.P., Simões, E.C.: A Gaussian kernel-based clustering algorithm with automatic hyper-parameters computation. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 393–400. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_45
Cleuziou, G., Moreno, J.: Kernel methods for point symmetry-based clustering. Pattern Recogn. 48, 2812–2830 (2015)
Diday, E., Govaert, G.: Classification automatique avec distances adaptatives. R.A.I.R.O. Inform. Comput. Sci. 11(4), 329–349 (1977)
Fauvel, M., Chanussot, J., Benediktsson, J.: Parsimonious mahalanobis kernel for the classification of high dimensional data. Pattern Recogn. 46, 845–854 (2013)
Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recogn. 41, 176–190 (2008)
Frigui, H., Hwanga, C., Rhee, F.C.H.: Clustering and aggregation of relational data with applications to image database categorization. Pattern Recogn. 40, 3053–3068 (2007)
Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Huellermeier, E., Rifki, M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: a generalization of the rand index and related measures. IEEE Trans. Fuzzy Syst. 20, 546–556 (2012)
Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651–666 (2010)
Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2005)
Manning, C., Raghavan, P., Schuetze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learn. 52(3), 217–237 (2003)
Mueller, K.R., Mika, S., Raetsch, G., Tsuda, K., Schoelkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12, 181–202 (2001)
Pal, N.R.: What and when can we gain from the kernel versions of c-means algorithm? IEEE Trans. Fuzzy Syst. 22, 363–369 (2014)
Tsai, C., Chiu, C.: Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm. Comput. Stat. Data Anal. 52, 4658–4672 (2008)
Xu, R., Wunusch, D.I.I.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)
Acknowledgments
The authors are grateful to the anonymous referees for their careful revision, and CNPq and FACEPE (Brazilian agencies) for their financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
de Carvalho, F.d.A.T., Santana, L.V.C., Ferreira, M.R.P. (2018). Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_67
Download citation
DOI: https://doi.org/10.1007/978-3-030-01418-6_67
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01417-9
Online ISBN: 978-3-030-01418-6
eBook Packages: Computer ScienceComputer Science (R0)