Abstract
In \(d\)-Scattered Set we are given an (edge-weighted) graph and are asked to select at least k vertices, so that the distance between any pair is at least d, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following:
-
For any \(d\ge 2\), an \(O^*(d^{\text {tw}})\)-time algorithm, where \(\text {tw}\) is the treewidth of the input graph and a tight SETH-based lower bound matching this algorithm’s performance. These generalize known results for Independent Set.
-
\(d\)-Scattered Set is W[1]-hard parameterized by vertex cover (for edge-weighted graphs), or feedback vertex set (for unweighted graphs), even if k is an additional parameter.
-
A single-exponential algorithm parameterized by vertex cover for unweighted graphs, complementing the above-mentioned hardness.
-
A \(2^{O(\text {td}^2)}\)-time algorithm parameterized by tree-depth (\(\text {td}\)), as well as a matching ETH-based lower bound, both for unweighted graphs.
We complement these mostly negative results by providing an FPT approximation scheme parameterized by treewidth. In particular, we give an algorithm which, for any error parameter \(\epsilon >0\), runs in time \(O^*((\text {tw}/\epsilon )^{O(\text {tw})})\) and returns a \(d/(1+\epsilon )\)-scattered set of size k, if a d-scattered set of the same size exists.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angel, E., Bampis, E., Escoffier, B., Lampis, M.: Parameterized power vertex cover. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 97–108. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_9
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)
Bodlaender, H.L.: The algorithmic theory of treewidth. Electron. Notes Discret. Math. 5, 27–30 (2000)
Bodlaender, H.L.: Treewidth: characterizations, applications, and computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_1
Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)
Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)
Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster algorithms on branch and clique decompositions. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_17
Borradaile, G., Le, H.: Optimal dynamic program for r-domination problems over tree decompositions. In: IPEC, vol. 63, pp. 8:1–8:23 (2016)
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1–3), 77–114 (2000)
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1
Eto, H., Guo, F., Miyano, E.: Distance- \(d\) independent set problems for bipartite and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014)
Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_20
Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-3 independent set problem on cubic graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 228–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_18
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: SODA, pp. 748–759. SIAM (2011)
Halldórsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discret. Appl. Math. 99(1–3), 39–54 (2000)
Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Mathematica 182, 105–142 (1999)
Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structural parameters, tight bounds, and approximation for (k, r)-center. CoRR, abs/1704.08868 (2017)
Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structurally parameterized d-scattered set. CoRR, abs/1709.02180 (2017)
Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375
Lampis, M.: Parameterized approximation schemes using graph widths. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 775–786. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_64
Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably optimal. In: SODA, pp. 777–789 (2011)
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72
Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few” minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16
Nesetril, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)
van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_51
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Katsikarelis, I., Lampis, M., Th. Paschos, V. (2018). Structurally Parameterized d-Scattered Set. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-00256-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00255-8
Online ISBN: 978-3-030-00256-5
eBook Packages: Computer ScienceComputer Science (R0)