iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-00256-5_24
Structurally Parameterized d-Scattered Set | SpringerLink
Skip to main content

Structurally Parameterized d-Scattered Set

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

  • 574 Accesses

Abstract

In \(d\)-Scattered Set we are given an (edge-weighted) graph and are asked to select at least k vertices, so that the distance between any pair is at least d, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following:

  • For any \(d\ge 2\), an \(O^*(d^{\text {tw}})\)-time algorithm, where \(\text {tw}\) is the treewidth of the input graph and a tight SETH-based lower bound matching this algorithm’s performance. These generalize known results for Independent Set.

  • \(d\)-Scattered Set is W[1]-hard parameterized by vertex cover (for edge-weighted graphs), or feedback vertex set (for unweighted graphs), even if k is an additional parameter.

  • A single-exponential algorithm parameterized by vertex cover for unweighted graphs, complementing the above-mentioned hardness.

  • A \(2^{O(\text {td}^2)}\)-time algorithm parameterized by tree-depth (\(\text {td}\)), as well as a matching ETH-based lower bound, both for unweighted graphs.

We complement these mostly negative results by providing an FPT approximation scheme parameterized by treewidth. In particular, we give an algorithm which, for any error parameter \(\epsilon >0\), runs in time \(O^*((\text {tw}/\epsilon )^{O(\text {tw})})\) and returns a \(d/(1+\epsilon )\)-scattered set of size k, if a d-scattered set of the same size exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angel, E., Bampis, E., Escoffier, B., Lampis, M.: Parameterized power vertex cover. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 97–108. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_9

    Chapter  Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)

    Google Scholar 

  3. Bodlaender, H.L.: The algorithmic theory of treewidth. Electron. Notes Discret. Math. 5, 27–30 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: Treewidth: characterizations, applications, and computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_1

    Chapter  Google Scholar 

  5. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

    Article  MathSciNet  Google Scholar 

  7. Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster algorithms on branch and clique decompositions. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_17

    Chapter  Google Scholar 

  8. Borradaile, G., Le, H.: Optimal dynamic program for r-domination problems over tree decompositions. In: IPEC, vol. 63, pp. 8:1–8:23 (2016)

    Google Scholar 

  9. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1–3), 77–114 (2000)

    Article  MathSciNet  Google Scholar 

  10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  12. Eto, H., Guo, F., Miyano, E.: Distance- \(d\) independent set problems for bipartite and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2014)

    Article  MathSciNet  Google Scholar 

  13. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximability of the distance independent set problem on regular graphs and planar graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 270–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_20

    Chapter  MATH  Google Scholar 

  14. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-3 independent set problem on cubic graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 228–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_18

    Chapter  Google Scholar 

  15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  16. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: SODA, pp. 748–759. SIAM (2011)

    Google Scholar 

  17. Halldórsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discret. Appl. Math. 99(1–3), 39–54 (2000)

    Article  MathSciNet  Google Scholar 

  18. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  19. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  20. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  21. Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structural parameters, tight bounds, and approximation for (k, r)-center. CoRR, abs/1704.08868 (2017)

    Google Scholar 

  22. Katsikarelis, I., Lampis, M., Paschos, V.Th.: Structurally parameterized d-scattered set. CoRR, abs/1709.02180 (2017)

    Google Scholar 

  23. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

    Book  MATH  Google Scholar 

  24. Lampis, M.: Parameterized approximation schemes using graph widths. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 775–786. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_64

    Chapter  Google Scholar 

  25. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably optimal. In: SODA, pp. 777–789 (2011)

    Google Scholar 

  26. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)

    Article  Google Scholar 

  27. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  MATH  Google Scholar 

  28. Montealegre, P., Todinca, I.: On distance-d independent set and other problems in graphs with “few” minimal separators. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 183–194. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53536-3_16

    Chapter  MATH  Google Scholar 

  29. Nesetril, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

    Article  MathSciNet  Google Scholar 

  30. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_51

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Katsikarelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katsikarelis, I., Lampis, M., Th. Paschos, V. (2018). Structurally Parameterized d-Scattered Set. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics