iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-1-4939-0802-8_5
Static Attitude Determination Methods | SpringerLink
Skip to main content

Part of the book series: Space Technology Library ((SPTL,volume 33))

Abstract

Attitude determination typically requires finding three independent quantities, such as any minimal parameterization of the attitude matrix. The mathematics behind attitude determination can be broadly characterized into approaches that use stochastic analysis and approaches that do not. We restrict the term “estimation” to approaches that explicitly account for stochastic variables in the mathematical formulation, such as a Kalman filter or a maximum likelihood approach [29]. Black’s 1964 TRIAD algorithm was the first published method for determining the attitude of a spacecraft using body and reference observations, but his method could only combine the information from two measurements [2]. One year later, Wahba formulated a general criterion for attitude determination using two or more vector measurements [36]. However, explicit relations to stochastic errors in the body measurements are not shown in these formulations. The connection to the stochastic nature associated with random measurement noise was first made by Farrell in a Kalman filtering application that appeared in a NASA report in 1964 [11], but was not published in the archival literature until 1970 [12]. Farrell’s filter did not account for errors in the system dynamics, which were first accounted for in a Kalman filter developed by Potter and Vander Velde in 1968 [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are indebted to Yang Cheng for providing the basis of the discussion in this paragraph.

  2. 2.

    Let M denote the 3 × 3 matrix defined by the right side of Eq. (5.49). The 4 − 4 component of Eq. (5.48) means that trB = trM. Then the upper left 3 × 3 submatrix of Eq. (5.48) says that B + BT = M + MT. Finally, the remaining 3 × 1 and 1 × 3 submatrices tell us that B − BT = M − MT, establishing Eq. (5.49).

  3. 3.

    We employ the convention that x1:0 or x5:4 is an empty vector, with no components.

  4. 4.

    One of the eigenvalues of the singular matrix M is zero, so its eigenvalue decomposition is M = μ1vvT + μ2wwT. Then mi ×mj = μ1μ2(v ×w)k(v ×w), where {i, j, k} is a cyclic permutation of {1, 2, 3}. The optimal indices are thus those with maximum |(mi ×mj)k|.

  5. 5.

    Paul Davenport discovered these relations, but did not publish them.

  6. 6.

    Much more important, in Paul Davenport’s opinion.

  7. 7.

    We can show that Eq. (5.112) gives an extremum of P𝜗𝜗 by differentiating Eq. (5.110) with respect to any ak, then substituting Eqs. (5.112) and (5.113) after differentiating, which gives zero for the derivative.

  8. 8.

    The really basic measurements are the electron counts in the individual pixels of the star tracker’s focal plane, but these are invariably reduced to centroids before being communicated to the attitude control system.

References

  1. Andrews, S.F., Bilanow, S.: Recent flight results of the TRMM Kalman filter. In: AIAA Guidance, Navigation and Control Conference. Monterey, CA (2002). AIAA 2002-5047

    Google Scholar 

  2. Black, H.D.: A passive system for determining the attitude of a satellite. AIAA J. 2(7), 1350–1351 (1964)

    Article  Google Scholar 

  3. Cheng, Y., Crassidis, J.L., Markley, F.L.: Attitude estimation for large field-of-view sensors. J. Astronaut. Sci. 54(3/4), 433–448 (2006)

    Article  Google Scholar 

  4. Cheng, Y., Shuster, M.D.: The speed of attitude estimation. In: Akella, M.R., Gearhart, J.W., Bishop, R.H., Treder, A.J. (eds.) Proceedings of the AAS/AIAA Space Flight Mechanics Meeting 2007, Advances in the Astronautical Sciences, vol. 127, pp. 101–116. AAS/AIAA, Univelt, San Diego (2007)

    Google Scholar 

  5. Cheng, Y., Shuster, M.D.: Improvement to the implementation of the QUEST algorithm. J. Guid. Contr. Dynam. 37(1), 301–305 (2014)

    Article  Google Scholar 

  6. Cohen, C.E.: Attitude determination. In: Parkinson, B., Spilker, J. (eds.) Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 64, chap. 19. American Institute of Aeronautics and Astronautics, Washington, DC (1996)

    Google Scholar 

  7. Crassidis, J.L., Andrews, S.F., Markley, F.L., Ha, K.: Contingency designs for attitude determination of TRMM. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 419–433. NASA-Goddard Space Flight Center, Greenbelt (1995)

    Google Scholar 

  8. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  9. Crassidis, J.L., Markley, F.L.: New algorithm for attitude determination using Global Positioning System signals. J. Guid. Contr. Dynam. 20(5), 891–896 (1997)

    Article  Google Scholar 

  10. Crassidis, J.L., Markley, F.L., Lightsey, E.G.: Global Positioning System integer ambiguity resolution without attitude knowledge. J. Guid. Contr. Dynam. 22(2), 212–218 (1999)

    Article  Google Scholar 

  11. Farrell, J.L.: Attitude determination by Kalman filtering. Contractor Report NASA-CR-598, NASA Goddard Space Flight Center, Washington, DC (1964)

    Google Scholar 

  12. Farrell, J.L.: Attitude determination by Kalman filtering. Automatica 6, 419–430 (1970)

    Article  Google Scholar 

  13. Farrell, J.L., Stuelpnagel, J.C.: A least-squares estimate of satellite attitude. SIAM Rev. 7(3), 384–386 (1966)

    Article  Google Scholar 

  14. Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. In: editorial board Bulletin Belgian Mathematical Society (ed.) Numerical Analysis (in honour of Jean Meinguet), pp. 63–84 (1996)

    Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  16. Halíř, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: 6th International Conference in Central Europe on Computer Graphics and Visualization, WSCG ’98, pp. 125–132. University of West Bohemia, Campus Bory, Plzen - Bory (1998)

    Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  18. Lerner, G.M.: Three-axis attitude determination. In: Wertz, J.R. (ed.) Spacecraft Attitude Determination and Control, chap. 12. Kluwer Academic, Dordrecht (1978)

    Google Scholar 

  19. Markley, F.L.: Attitude determination using vector observations and the singular value decomposition. J. Astronaut. Sci. 36(3), 245–258 (1988)

    Google Scholar 

  20. Markley, F.L.: Attitude determination using vector observations: A fast optimal matrix algorithm. J. Astronaut. Sci. 41(2), 261–280 (1993)

    MathSciNet  Google Scholar 

  21. Markley, F.L.: Fast quaternion attitude estimation from two vector measurements. J. Guid. Contr. Dynam. 25(2), 411–414 (2002)

    Article  Google Scholar 

  22. Markley, F.L.: Optimal attitude matrix from two vector measurements. J. Guid. Contr. Dynam. 31(3), 765–768 (2008)

    Article  Google Scholar 

  23. Markley, F.L., Cheng, Y., Crassidis, J.L., Oshman, Y.: Averaging quaternions. J. Guid. Contr. Dynam. 30(4), 1193–1196 (2007)

    Article  Google Scholar 

  24. Markley, F.L., Mortari, D.: Quaternion attitude estimation using vector observations. J. Astronaut. Sci. 48(2/3), 359–380 (2000)

    Google Scholar 

  25. Mortari, D.: ESOQ: A closed-form solution of the Wahba problem. J. Astronaut. Sci. 45(2), 195–204 (1997)

    MathSciNet  Google Scholar 

  26. Mortari, D.: Second estimator of the optimal quaternion. J. Guid. Contr. Dynam. 23(5), 885–888 (2000)

    Article  Google Scholar 

  27. Potter, J.E., Vander Velde, W.E.: Optimum mixing of gyroscope and star tracker data. J. Spacecraft 5(5), 536–540 (1968)

    Article  Google Scholar 

  28. Psiaki, M.L., Mohiuddin, S.: Global Positioning System integer ambiguity resolution using factorized least-squares techniques. J. Guid. Contr. Dynam. 30(2), 346–356 (2007)

    Article  Google Scholar 

  29. Shuster, M.D.: Maximum likelihood estimation of spacecraft attitude. J. Astronaut. Sci. 37(1), 79–88 (1989)

    Google Scholar 

  30. Shuster, M.D.: Deterministic three-axis attitude determination. J. Astronaut. Sci. 52(3), 405–419 (2004)

    MathSciNet  Google Scholar 

  31. Shuster, M.D.: The quest for better attitudes. J. Astronaut. Sci. 54(3/4), 657–683 (2006)

    Article  MathSciNet  Google Scholar 

  32. Shuster, M.D.: The TRIAD algorithm as maximum likelihood estimation. J. Astronaut. Sci. 54(1), 113–123 (2006)

    Article  MathSciNet  Google Scholar 

  33. Shuster, M.D.: The TASTE test. J. Astronaut. Sci. 57(1/2), 61–71 (2009)

    Article  Google Scholar 

  34. Shuster, M.D., Natanson, G.A.: Quaternion computation from a geometric point of view. J. Astronaut. Sci. 41(4), 545–556 (1993)

    MathSciNet  Google Scholar 

  35. Shuster, M.D., Oh, S.D.: Attitude determination from vector observations. J. Guid. Contr. 4(1), 70–77 (1981)

    Article  Google Scholar 

  36. Wahba, G.: A least-squares estimate of satellite attitude. SIAM Rev. 7(3), 409 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markley, F.L., Crassidis, J.L. (2014). Static Attitude Determination Methods. In: Fundamentals of Spacecraft Attitude Determination and Control. Space Technology Library, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0802-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0802-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0801-1

  • Online ISBN: 978-1-4939-0802-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics