iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-1-4614-8265-9_80732
Recommender Systems | SpringerLink
Skip to main content

Recommender Systems

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems
  • 112 Accesses

Synonyms

Recommendation engine

Definition

A recommender system (abbrv. RecSys) is a software artifact that suggests interesting items to users from a large pool of items. Let \(\mathcal {U}\) be the set of users registered in the system and \(\mathcal {I}\) denote the set of items. RecSys filters items based upon a utility function \(\mathcal {F}(u,i)\) that predicts how much a user u (such that \(u \in \mathcal {U}\)) would like an item i (such that \(i \in \mathcal {I}\)). The system then recommends a set of items \(\mathcal {I}^{\prime }\) such that \(\mathcal {I}^{\prime }\) ⊂ \(\mathcal {I}\) and \(\forall {i \in \mathcal {I}^{\prime }}: \mathcal {F}(u,i) \ge \mathrm {argmax}_{j\in \mathcal {I}-\mathcal {I}^{\prime }}{\mathcal {F}(u,j)}\). In other words, the system selects a set items \(\mathcal {I}^{\prime }\) among \(\mathcal {I}\) that maximize the recommendation utility function \(\mathcal {F}(u,i)\). The cardinality of \(\mathcal {I}^{\prime }\) is usually much less than \(\m...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng TKDE. 2005;17(6):734–49.

    Article  Google Scholar 

  2. Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence; 1998.

    Google Scholar 

  3. Burke R. Hybrid recommender systems: survey and experiments. User Model User-Adap Inter. 2002;12(4):331–70.

    Article  MATH  Google Scholar 

  4. Das A, Datar M, Garg A, Rajaram S. Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th International World Wide Web Conference; 2007.

    Google Scholar 

  5. Koren Y, Bell RM, Volinsky C. Matrix factorization techniques for recommender systems. IEEE Comput. 2009;42(8):30–7.

    Article  Google Scholar 

  6. Levandoski JJ, Sarwat M, Mokbel MF, Ekstrand MD. RecStore: an extensible and adaptive framework for online recommender queries inside the database engine. In: Proceedings of the 15th International Conference on Extending Database Technology; 2012.

    Google Scholar 

  7. Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: state of the art and trends. In: Recommender systems handbook. Springer; 2011. p. 73–105. https://link.springer.com/book/10.1007/978-0-387-85820-3

    Book  Google Scholar 

  8. Miller BN, Alber I, Lam SK, Konstan JA, Riedl J. MovieLens unplugged: experiences with an occasionally connected recommender system. In: Proceedings of the International Conference on Intelligent User Interfaces; 2002.

    Google Scholar 

  9. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work; 1994.

    Google Scholar 

  10. Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference; 2001.

    Google Scholar 

  11. Sarwat M, Avery J, Mokbel MF. RecDB in action: recommendation made easy in relational databases. Proc. VLDB Endow. 2013;6(12):1242–5.

    Article  Google Scholar 

  12. Sarwat M, Levandoski JJ, Eldawy A, Mokbel MF. LARS*: an efficient and scalable location-aware recommender system. IEEE Trans Knowl Data Eng. 2014;26(6):1384–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sarwat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sarwat, M., Mokbel, M.F. (2018). Recommender Systems. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_80732

Download citation

Publish with us

Policies and ethics