iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-1-4614-3567-9_2
Metabolic Networks and Their Evolution | SpringerLink
Skip to main content

Metabolic Networks and Their Evolution

  • Chapter
  • First Online:
Evolutionary Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

Since the last decade of the twentieth century, systems biology has gained the ability to study the structure and function of genome-scale metabolic networks. These are systems of hundreds to thousands of chemical reactions that sustain life. Most of these reactions are catalyzed by enzymes which are encoded by genes. A metabolic network extracts chemical elements and energy from the environment, and converts them into forms that the organism can use. The function of a whole metabolic network constrains evolutionary changes in its parts. I will discuss here three classes of such changes, and how they are constrained by the function of the whole. These are the accumulation of amino acid changes in enzyme-coding genes, duplication of enzyme-coding genes, and changes in the regulation of enzymes. Conversely, evolutionary change in network parts can alter the function of the whole network. I will discuss here two such changes, namely the elimination of reactions from a metabolic network through loss of function mutations in enzyme-coding genes, and the addition of metabolic reactions, for example through mechanisms such as horizontal gene transfer. Reaction addition also provides a window into the evolution of metabolic innovations, the ability of a metabolism to sustain life on new sources of energy and of chemical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3. doi:121.10.1038/msb4100155

    Google Scholar 

  2. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143. doi:10.1038/nrmicro1949

    Google Scholar 

  3. Holms WH (1986) The central metabolic pathways of Escherischia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass and excretion of acetate. Current Topics Cell Regul 28:69–105

    CAS  Google Scholar 

  4. Dykhuizen DE, Dean AM, Hartl DL (1987) Metabolic flux and fitness. Genetics 115(#1):25–31

    Google Scholar 

  5. Keightley PD, Kacser H (1987) Dominance, pleiotropy and metabolic structure. Genetics 117(#2):319–329

    Google Scholar 

  6. Joshi A, Palsson BO (1989) Metabolic dynamics in the human red-cell.1. A comprehensive kinetic model. J Theor Biol 141(4):515–528

    Google Scholar 

  7. Hofmeyr J-HS (1991) Control pattern analysis of metabolic pathways: flux and concentration control in linear pathways. Eur J Biochem 275:253–258

    Google Scholar 

  8. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165:477–502

    CAS  Google Scholar 

  9. Veech RL, Fell DA (1996) Distribution control of metabolic flux. Cell Biochem Funct 14(#4):229–236

    Google Scholar 

  10. Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15(8):308–314

    Article  CAS  Google Scholar 

  11. Thomas S, Fell DA (1998) A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation. Eur J Biochem 258(#3):956–967

    Google Scholar 

  12. Fell D (1997) Understanding the control of metabolism. Portland Press, Miami

    Google Scholar 

  13. Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37(6):636–640

    Article  PubMed  CAS  Google Scholar 

  14. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. Fems Yeast Res 5(6–7):545–558

    Article  PubMed  CAS  Google Scholar 

  15. Blank LM, Kuepfer L, Sauer U (2005) Large-scale C-13-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6(6):R49

    Article  PubMed  Google Scholar 

  16. Price N, Reed J, Palsson B (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  PubMed  CAS  Google Scholar 

  17. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738. doi:10.1038/nprot.2007.99

    Article  PubMed  CAS  Google Scholar 

  18. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman and Hall, New York

    Book  Google Scholar 

  19. Cormen TH, Leiserson CE, Rivest RL, Stein C (2005) Introduction to algorithms. 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  20. Forster J, Famili I, Fu P, Palsson B, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed  CAS  Google Scholar 

  21. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natal Acad Sci USA 97(10):5528–5533

    Article  CAS  Google Scholar 

  22. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3. doi:119.10.1038/msb4100162

    Google Scholar 

  23. Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using linear optimization.1. development of mathematical formalism. J Theor Biol 154(4):421–454

    Google Scholar 

  24. Fell DA, Small JR (1986) Fat synthesis in adipose-tissue - an examination of stoichiometric constraints. Biochem J 238(3):781–786

    PubMed  CAS  Google Scholar 

  25. Segre D, Vitkup D, Church G (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112–15117

    Article  PubMed  CAS  Google Scholar 

  26. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends in Biotechnology 22(8):400–405. doi:10.1016/j.tibtech.2004.06.010

    Article  PubMed  CAS  Google Scholar 

  27. Palsson BO, Price ND, Papin JA (2003) Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends Biotechnol 21 (5):195–198. doi:10.1016/s0167–7799(03)00080–5

    Article  PubMed  CAS  Google Scholar 

  28. Papin JA, Price ND, Palsson BO (2002) Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res 12(12):1889–1900. doi:10.1101/gr.327702

    Article  PubMed  CAS  Google Scholar 

  29. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420(6912):190–193

    Article  PubMed  CAS  Google Scholar 

  30. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18(3):326–332

    Article  PubMed  CAS  Google Scholar 

  31. Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21(2):64–69

    Article  PubMed  CAS  Google Scholar 

  32. Larhlimi A, Bockmayr A (2006) A new constraint-based description of the steady-state flux cone of metabolic networks. In: Workshop on Networks in Computational Biology, Ankara, TURKEY, Sep 10–12 2006. pp. 2257–2266. doi:10.1016/j.dam.2008.06.039

    Google Scholar 

  33. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. Plos Comput Biol 4(5). doi:e1000082.10.1371/journal.pcbi.1000082

    Google Scholar 

  34. Herrgard MJ, Fong SS, Palsson BO (2006) Identification of genome-scale metabolic network models using experimentally measured flux profiles. Plos Comput Biol 2(7):676–686. doi:e72q.10.1371/journal.pcbi.0020072

    Article  CAS  Google Scholar 

  35. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–96

    Article  PubMed  CAS  Google Scholar 

  36. Herrgard MJ, Lee BS, Portnoy V, Palsson BO (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5):627–635. doi:10.1101/gr.4083206

    Article  PubMed  CAS  Google Scholar 

  37. Forster J, Famili I, Palsson BO, Nielsen J (2003) Large-scale evaluation of in-silico gene deletions in Saccharomyces cerevisiae. Omics 7:193–202

    Article  PubMed  Google Scholar 

  38. Fong SS, Palsson BO (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36(10):1056–1058

    Article  PubMed  CAS  Google Scholar 

  39. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26(6):659–667. doi:10.1038/nbt1401

    Google Scholar 

  40. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805. doi:10.1529/biophysj.106.093138

    Article  PubMed  CAS  Google Scholar 

  41. Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266(22):14440–14445

    PubMed  CAS  Google Scholar 

  42. Li W-H (1997) Molecular evolution. Sinauer, Massachusetts

    Google Scholar 

  43. Parmley JL, Hurst LD (2007) How do synonymous mutations affect fitness? Bioessays 29(6):515–519. doi:10.1002/bies.20592

    Article  PubMed  CAS  Google Scholar 

  44. Wagner A, Fell D (2001) The small world inside large metabolic networks. Proc Roy Soc London Ser B 280:1803–1810

    Article  Google Scholar 

  45. Newman MEJ (2003) The structure and function of complex networks. Siam Review 45(2):167–256

    Article  Google Scholar 

  46. Vitkup D, Kharchenko P, Wagner A (2006) Influence of metabolic network structure and function on enzyme evolution. Genome Biol 7(5). doi:R3910.1186/gb-2006–7–5-r39

    Article  Google Scholar 

  47. Greenberg AJ, Stockwell SR, Clark AG (2008) Evolutionary constraint and adaptation in the metabolic network of Drosophila. Mol Biol Evol 25(12):2537–2546. doi:10.1093/molbev/msn205

    Article  PubMed  CAS  Google Scholar 

  48. Hudson CM, Conant GC (2011) Expression level, cellular compartment and metabolic network position all influence the average selective constraint on mammalian enzymes. BMC Evolutionary Biol 11. doi:89.10.1186/1471-2148-11-89

    Google Scholar 

  49. Hahn M, Conant GC, Wagner A (2004) Molecular evolution in large genetic networks: does connectivity equal importance? J Mol Evol 58:203–211

    Article  PubMed  CAS  Google Scholar 

  50. Low WY, Ng HL, Morton CJ, Parker MW, Batterham P, Robin C (2007) Molecular evolution of glutathione S-transferases in the genus drosophila. Genetics 177(3):1363–1375. doi:10.1534/genetics.107.075838

    Article  PubMed  CAS  Google Scholar 

  51. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XQH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang JH, Miklos GLG, Nelson C, Broder S, Clark AG, Nadeau C, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng ZM, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge WM, Gong FC, Gu ZP, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke ZX, Ketchum KA, Lai ZW, Lei YD, Li ZY, Li JY, Liang Y, Lin XY, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue BX, Sun JT, Wang ZY, Wang AH, Wang X, Wang J, Wei MH, Wides R, Xiao CL, Yan CH, Yao A, Ye J, Zhan M, Zhang WQ, Zhang HY, Zhao Q, Zheng LS, Zhong F, Zhong WY, Zhu SPC, Zhao SY, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An HJ, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi HY, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays AD, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu XJ, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen MY, Wu D, Wu M, Xia A, Zandieh A, Zhu XH (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Google Scholar 

  52. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  PubMed  CAS  Google Scholar 

  53. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Ann Rev Genet 38:615–643

    Article  PubMed  CAS  Google Scholar 

  54. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9(12):938–950. doi:10.1038/nrg2482

    Article  PubMed  CAS  Google Scholar 

  55. Bekaert M, Conant GC (2011) Copy number alterations among mammalian enzymes cluster in the metabolic network. Molecular Biology and Evolution 28(2):1111–1121. doi:10.1093/molbev/msq296

    Article  PubMed  CAS  Google Scholar 

  56. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natal Acad Sci USA 99(25):16144–16149

    Article  CAS  Google Scholar 

  57. van Hoek MJA, Hogeweg P (2009) Metabolic adaptation after whole genome duplication. Mol Biol Evol 26(11):2441–2453. doi:10.1093/molbev/msp160

    Article  PubMed  Google Scholar 

  58. Fong SS, Joyce AR, Palsson BO (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15(10):1365–1372. doi:10.1101/gr.3832305

    Article  PubMed  CAS  Google Scholar 

  59. McAlister-Henn L, Small W (1997) Molecular genetics of yeast TCA cycle isozymes. Prog Nucleic Acid Res Mol Biol 57:317–339

    Article  PubMed  CAS  Google Scholar 

  60. Wagner A (2009) Evolutionary constraints permeate large metabolic networks. BMC Evolutionary Biol 9. doi:231.10.1186/1471-2148-9-231

    Google Scholar 

  61. Vieira G, Sabarly V, Bourguignon PY, Durot M, Le Fevre F, Mornico D, Vallenet D, Bouvet O, Denamur E, Schachter V, Medigue C (2011) Core and panmetabolism in Escherichia coli. J Bacteriol 193(6):1461–1472. doi:10.1128/jb.01192–10

    Article  PubMed  CAS  Google Scholar 

  62. Noor E, Eden E, Milo R, Alon U (2010) Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39(5):809–820. doi:10.1016/j.molcel.2010.08.031

    Article  PubMed  CAS  Google Scholar 

  63. Melendez-Hevia E, Waddell TG, Cascante M (1996) The puzzle of the Krebs citric-acid cycle: assembling the pieces of chemically feasible reactions; and opportunism in the design of metabolic pathways during evolution. J Mol Evol 43(#3):293–303

    Google Scholar 

  64. Huynen MA, Dandekar T, Bork P (1999) Variation and evolution of the citric acid cycle: a genomic perspective. Trends Microbiol 7(7):281–291

    Article  PubMed  CAS  Google Scholar 

  65. Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15(8):321–326

    Article  PubMed  Google Scholar 

  66. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Ann Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119

    Article  PubMed  CAS  Google Scholar 

  67. Thomas GH, Zucker J, MacDonald SJ, Sorokin A, Goryanin I, Douglas AE (2009) A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Sys Biol 3:24. doi:10.1186/1752–0509–3–24

    Google Scholar 

  68. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    Article  PubMed  Google Scholar 

  69. Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen WH, Wodke JAH, Guell M, Martinez S, Bourgeois R, Kuhner S, Raineri E, Letunic I, Kalinina OV, Rode M, Herrmann R, Gutierrez-Gallego R, Russell RB, Gavin AC, Bork P, Serrano L (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326(5957):1263–1268. doi:10.1126/science.1177263

    Article  PubMed  CAS  Google Scholar 

  70. Soyer OS, Pfeiffer T (2010) Evolution under fluctuating environments explains observed robustness in metabolic networks. PLoS Comp Biol 6(8). doi:e1000907.10.1371/journal.pcbi.1000907

    Article  Google Scholar 

  71. Rodrigues JF, Wagner A (2011) Genotype networks in sulfur metabolism. BMC Sys Biol 5:39. doi:10.1186/1752–0509–5–39

    Article  CAS  Google Scholar 

  72. Yizhak K, Tuller T, Papp B, Ruppin E (2011) Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol Syst Biol 7. doi:479.10.1038/msb.2011.11

    Google Scholar 

  73. Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440(7084):667–670

    Article  PubMed  CAS  Google Scholar 

  74. Pal C, Papp B, Lercher MJ (2005) Horizontal gene transfer depends on gene content of the host. In: Joint meeting of the 4th european conference on computational biology/6th meeting of the spanish-bioinformatics-network, Madrid, SPAIN, Sep 28-Oct 01 2005. pp 222–223. doi:10.1093/bioinformatics/bti1136

    Google Scholar 

  75. Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37(12):1372–1375. doi:10.1038/ng1686

    Article  PubMed  CAS  Google Scholar 

  76. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson LD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329

    Article  PubMed  CAS  Google Scholar 

  77. Ochman H, Lawrence J, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  78. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3(5):e130

    Article  PubMed  Google Scholar 

  79. Ochman H, Lerat E, Daubin V (2005) Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA 102:6595–6599

    Article  PubMed  CAS  Google Scholar 

  80. Choi IG, Kim SH (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci USA 104(11):4489–4494

    Article  PubMed  CAS  Google Scholar 

  81. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Ann Rev Microbiol 55:709–742

    Article  CAS  Google Scholar 

  82. Daubin V, Ochman H (2004) Quartet mapping and the extent of lateral transfer in bacterial genomes. Mol Biol Evol 21(1):86–89

    Article  PubMed  CAS  Google Scholar 

  83. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95(16):9413–9417

    Article  PubMed  CAS  Google Scholar 

  84. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Colladovides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia-Coli K-12. Science 277(#5331):1453–1462

    Google Scholar 

  85. Postgate JR (1994) The outer reaches of life. Cambridge University Press, Cambridge, UK

    Google Scholar 

  86. Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103. doi:10.1126/science.1155157

    Article  PubMed  CAS  Google Scholar 

  87. Rehmann L, Daugulis AJ (2008) Enhancement of PCB degradation by Burkholderia xenovorans LB400 in biphasic systems by manipulating culture conditions. Biotechnol Bioeng 99(3):521–528. doi:10.1002/bit.21610

    Article  PubMed  CAS  Google Scholar 

  88. van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64(11):4185–4193

    PubMed  Google Scholar 

  89. van der Meer JR Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. In: Beijerinck centennial symposium on microbial physiology and gene regulation - emerging principles and applications, The Hague, Netherlands, Dec 1995. pp 159–178

    Google Scholar 

  90. Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25(6):261–265

    Article  PubMed  CAS  Google Scholar 

  91. Cline RE, Hill RH, Phillips DL, Needham LL (1989) Pentachlorophenol measurements in body-fluids of people in log homes and workplaces. Arch Environ Contam Toxicol 18(4):475–481

    Article  PubMed  CAS  Google Scholar 

  92. Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–452

    PubMed  CAS  Google Scholar 

  93. Benfey PN, Mitchell-Olds T (2008) Perspective - From genotype to phenotype: Systems biology meets natural variation. Science 320(5875):495–497. doi:10.1126/science.1153716

    Article  PubMed  CAS  Google Scholar 

  94. Wagner A (2011) The origins of evolutionary innovations. A theory of transformative change in living systems. Oxford University Press, Oxford, UK

    Google Scholar 

  95. Rodrigues JF, Wagner A (2009) Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Comp Biol 5(12):e1000613

    Article  Google Scholar 

  96. Samal A, Rodrigues JFM, Jost J, Martin OC, Wagner A (2010) Genotype networks in metabolic reaction spaces. BMC Sys Biol 4:30

    Article  Google Scholar 

  97. Gavrilets S, Gravner J (1997) Percolation on the fitness hypercube and the evolution of reproductive isolation. J Theor Biol 184(#1):51–64

    Google Scholar 

  98. Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44:3–54

    Article  Google Scholar 

  99. Ndifon W, Plotkin JB, Dushoff J (2009) On the accessibility of adaptive phenotypes of a bacterial metabolic network. Plos Comput Biol 5(8). doi:e1000472.10.1371/journal.pcbi.1000472

    Article  Google Scholar 

  100. Meiklejohn C, Hartl D (2002) A single mode of canalization. Trends Ecol Evol 17(10):468–473

    Article  Google Scholar 

  101. Wagner A (2005) Robustness and evolvability in living systems. Princeton University Press, Princeton, NJ

    Google Scholar 

  102. Wagner GP, Booth G, Bagherichaichian H (1997) A population genetic theory of canalization. Evolution 51(#2):329–347

    Google Scholar 

  103. Papp B, Teusink B, Notebaart RA (2009) A critical view of metabolic network adaptations. HFSP J 3(1):24–35. doi:10.2976/1.3020599

    Article  PubMed  Google Scholar 

  104. Wang Z, Zhang J (2009) Abundant indispensable redundancies in cellular metabolic networks. Genome Biol Evol 1:23–33

    Article  PubMed  Google Scholar 

  105. Freilich S, Kreimer A, Borenstein E, Gophna U, Sharan R, Ruppin E (2010) Decoupling environment-dependent and independent genetic robustness across bacterial species. PLoS Comp Biol 6(2). doi:e1000690.10.1371/journal.pcbi.1000690

    Article  Google Scholar 

  106. Ciliberti S, Martin OC, Wagner A (2007) Innovation and robustness in complex regulatory gene networks. Proc Natal Acad Sci USA 104:13591–13596

    Article  CAS  Google Scholar 

  107. Ferrada E, Wagner A (2008) Protein robustness promotes evolutionary innovations on large evolutionary time scales. Proc Roy Soc Lond B Biol Sci 275:1595–1602

    Article  CAS  Google Scholar 

  108. Schuster P, Fontana W, Stadler P, Hofacker I (1994) From sequences to shapes and back - a case-study in RNA secondary structures. Proc Roy Soc Lond B 255(1344):279–284

    Article  CAS  Google Scholar 

  109. Lipman D, Wilbur W (1991) Modeling neutral and selective evolution of protein folding. Proc Roy Soc Lond B 245(1312):7–11

    Article  CAS  Google Scholar 

  110. Raman K, Wagner A (2011) Evolvability and robustness in a complex signaling circuit. Mol BioSyst 7:1081–1092

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wagner, A. (2012). Metabolic Networks and Their Evolution. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_2

Download citation

Publish with us

Policies and ethics