iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-1-4471-5102-9_163-1
Structured Singular Value and Applications: Analyzing the Effect of Linear Time-Invariant Uncertainty in Linear Systems | SpringerLink
Skip to main content

Structured Singular Value and Applications: Analyzing the Effect of Linear Time-Invariant Uncertainty in Linear Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

This entry presents the most commonly used formulations of robust stability and robust \(\mathcal{H}_{\infty }\) performance for linear systems with highly structured, linear, time-invariant uncertainty. The structured singular value function (μ) is specifically defined for this purpose, involving a problem-specific set, called the uncertainty set. With the uncertainty set chosen, μ is a real-valued function defined on complex matrices of a fixed dimension. A few key properties are easily derived from the definition and then applied to solve the robustness analysis problem. Computation of μ, which is required to implement the analysis tests, is difficult, so computable and refinable upper and lower bounds are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Boyd S, Desoer CA (1985) Subharmonic functions and performance bounds on linear time-invariant feedback systems. IMA J Math Control Inf 2:153–170

    Article  Google Scholar 

  • Boyd S, El Ghaoui L (1993) Method of centers for minimizing generalized eigenvalues. Linear Algebra Appl 188:63–111

    Article  MathSciNet  Google Scholar 

  • Calafiore GC, Dabbene F, Tempo R (2000) Randomized algorithms for probabilistic robustness with real and complex structured uncertainty. IEEE Trans Autom Control 45(12):2218–2235

    Article  MATH  MathSciNet  Google Scholar 

  • Chen J, Fan MKH, and Nett CN (1994) Structured singular values and stability analysis of uncertain polynomials, part 1 and 2. Syst Control Lett 23:53–65 and 97–109

    Google Scholar 

  • de Gaston RRE, Safonov MG (1988) Exact calculation of the multiloop stability margin. IEEE Trans Autom Control 33(2):156–171

    Article  MATH  Google Scholar 

  • Doyle J (1982) Analysis of feedback systems with structured uncertainties. IEE Proc Part D 129(6):242–250

    Article  MathSciNet  Google Scholar 

  • Dullerud G, Paganini F (2000) A course in robust control theory, vol 6. Springer, New York

    Book  MATH  Google Scholar 

  • Fan MKH, Tits AL, Doyle JC (1991) Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans Autom Control 36(1):25–38

    Article  MATH  MathSciNet  Google Scholar 

  • Ferreres G, Magni JF, Biannic JM (2003) Robustness analysis of flexible structures: practical algorithms. Int J Robust Nonlinear Control 13(8):715–733

    Article  MATH  MathSciNet  Google Scholar 

  • Foo YK, Postlethwaite I (1988) Extensions of the small-μ test for robust stability. IEEE Trans Autom Control 33(2):172–176

    Article  MATH  Google Scholar 

  • Helmersson A (1995) Methods for robust gain scheduling. PhD thesis, Linköping

    Google Scholar 

  • Newlin MP, Young PM (1997) Mixed μ problems and branch and bound techniques. Int J Robust Nonlinear Control 7:145–164

    Article  MATH  MathSciNet  Google Scholar 

  • Packard A, Pandey P (1993) Continuity properties of the real/complex structured singular value. IEEE Trans Autom Control 38(3):415–428

    Article  MATH  MathSciNet  Google Scholar 

  • Safonov MG (1982) Stability margins of diagonally perturbed multivariable feedback systems. Control Theory Appl IEE Proc D 129:251–256. IET

    Google Scholar 

  • Sideris A, Sanchez Pena RS (1989) Fast computation of the multivariable stability margin for the real interrelated uncertain parameters. IEEE Trans Autom Control 34(12):1272–1276

    Article  MATH  MathSciNet  Google Scholar 

  • Tits A, Fan MKH (1995) On the small-μ theorem. Automatica 31(8):1199–1201

    Article  MATH  MathSciNet  Google Scholar 

  • Toker O, Ozbay H (1998) On the complexity of purely complex mu; computation and related problems in multidimensional systems. IEEE Trans Autom Control 43(3):409–414

    Article  MATH  MathSciNet  Google Scholar 

  • Wall J, Doyle JC, Stein G (1982) Performance and robustness analysis for structured uncertainty. In: IEEE conference on decision and control, Orlando, pp 629–636

    Google Scholar 

  • Young PM, Doyle JC (1997) A lower bound for the mixed μ problem. IEEE Trans Autom Control 42(1):123–128

    Article  MATH  MathSciNet  Google Scholar 

  • Young P, Newlin M, Doyle J (1995) Computing bounds for the mixed μ problem. Int J Robust Nonlinear Control 5(6):573–590

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou K, Doyle JC, Glover K (1996) Robust and optimal control, vol 40. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Packard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Packard, A., Seiler, P., Balas, G. (2014). Structured Singular Value and Applications: Analyzing the Effect of Linear Time-Invariant Uncertainty in Linear Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_163-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_163-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics