iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-0-387-78133-4_1
Software for Numerical Algebraic Geometry: A Paradigm and Progress Towards its Implementation | SpringerLink
Skip to main content

Software for Numerical Algebraic Geometry: A Paradigm and Progress Towards its Implementation

  • Chapter
Software for Algebraic Geometry

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 148))

  • 1055 Accesses

Abstract

Though numerical methods to find all the isolated solutions of nonlinear systems of multivariate polynomials go back 30 years, it is only over the last decade that numerical methods have been devised for the computation and manipulation of algebraic sets coming from polynomial systems over the complex numbers. Collectively, these algorithms and the underlying theory have come to be known as numerical algebraic geometry. Several software packages are capable of carrying out some of the operations of numerical algebraic geometry, although no one package provides all such capabilities. This paper contains an enumeration of the operations that an ideal software package in this field would allow. The current and upcoming capabilities of Bertini, the most recently released package in this field, are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.L. Allgower and K. Georg, Introduction to numerical continuation methods, Classics in Applied Mathematics, 45, SIAM, Philadelphia, 2003. Reprint of the 1990 edition (Springer-Verlag, Berlin).

    MATH  Google Scholar 

  2. D.J. Bates, J.D. Hauenstein, A.J. Sommese, and G.W. Wampler, Bertini: Software for Numerical Algebraic Geometry, available at www.nd.edu/ -sommese/bertini.

  3. _____, Adaptive multiprecision path tracking, to appear SIAM J. Num. Anal.

    Google Scholar 

  4. D.F. Davidenko, On a new method of numerical solution of systems of nonlinear equations, Doklady Acad. Nauk SSSR (N.S.), 88:601-602, 1953.

    MATH  MathSciNet  Google Scholar 

  5. J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

    MATH  Google Scholar 

  6. T. Gao and T.Y. Li, HOM4PS, available at www.csulb.edu/-tgao.

  7. T. Gao, T.Y. Li, and M. Wu, Algorithm 846: Mixed Vol: A software package for mixed-volume computation, ACM Trans. Math Software, 31(4):555-560, 2005. Software available at www.csulb.edu/-tgao.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Griewank, Evaluating derivatives. Principles and techniques of algorithmic differentiation, Frontiers in Applied Mathematics,19, SIAM, Philadelphia, 2000.

    Google Scholar 

  9. T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizutani, PHoM-a polyhedral homotopy continuation method for polynomial systems, Computing, 73 (1):55-77, 2004. Software available at www.is.titech.ac.jp/-kojima.

    Article  MathSciNet  Google Scholar 

  10. T. Gunji, S. Kim, K. Fujisawa, and M. Kojima, PhoMpara-parallel imple-menation of the Polyhedral Homotopy continuation Method for polynomial systems, Computing, 77(4):387-411, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Leykin, J. Verschelde, and A. Zhao, Evaluation of Jacobian matrices for Newton's method with deflation for isolated singularities of polynomial sys-tems, in proceedings of Snc 2005 (International Workshop on Symbolic-Numeric Computation, Xi'an, China, July 19-21, 2005), edited by Dongming Wang and Lihong Zhi, pp. 19-28, 2005.

    Google Scholar 

  12. A. Leykin, J. Verschelde, and Y. Zhuang, Parallel Homotopy Algorithms to Solve Polynomial Systems, in proceedings of ICMS 2006 (Second International Congress on Mathematical Software, Castro Urdiales, Spain, September 1-3, 2006), Lecture Notes in Computer Science, 4151:225-234, 2006,

    Google Scholar 

  13. T.Y. Li, Numerical solution of multivariate polynomial systems by homotopy con-tinuation methods, Acta Numer., 6:399-436, 1997.

    Article  Google Scholar 

  14. T.Y. Li and Z. Zeng, A rank-revealing method with updating, downdating, and applications, SIAM J. Matrix Anal. Appl., 26(4):918-946, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Lu, D.J. Bates, A.J. Sommese, and G.W. Wampler, Finding all real points of a complex curve, to appear Contemporary Mathematics.

    Google Scholar 

  16. A.P. Morgan, Solving polynomial systems using continuation for engineering and scientific problems, Prentice-Hall, Englewood Cliffs, N.J., 1987.

    MATH  Google Scholar 

  17. A.P. Morgan, A.J. Sommese, and C.W. Wampler, Computing singular solutions to nonlinear analytic systems, Numer. Math., 58(7):669-684, 1991.

    MATH  MathSciNet  Google Scholar 

  18. ——,Computing singular solutions to polynomial systems, Adv. Appl. Math., 13(3):305-327,1992.

    Google Scholar 

  19. ——,A power series method for computing singular solutions to nonlinear analytic systems, Numer. Math., 63(3):391-409, 1992.

    Google Scholar 

  20. A.J. Sommese and J. Verschelde, Numerical homotopies to compute generic points on positive dimensional algebraic sets, J. Complexity, 16(3):572-602, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.J. Sommese, J. Verschelde, and G.W. Wampler, Using monodromy to de-compose solution sets of polynomial systems into irreducible components, in proceedings of Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), NATO Sci. Ser. II Math. Phys. Chem., 36, 2001.

    Google Scholar 

  22. ——,Symmetric functions applied to decomposing solution sets of polynomial systems, SIAM J. Num. Anal., 40(6):2026-2046, 2002.

    Google Scholar 

  23. ——,Homotopies for intersecting solution components of polynomial systems, SIAM J. Num. Anal., 42(4):1552-1571, 2004.

    Google Scholar 

  24. A.J. Sommese and C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, World Scientific, Singapore, 2005.

    MATH  Google Scholar 

  25. _____,Exceptional sets and fiber products, to appear Foundations of Computational Mathematics.

    Google Scholar 

  26. G.W. Stewart, Matrix algorithms. Vol. I. Basic decompositions, SIAM, Philadel-phia, 1998.

    MATH  Google Scholar 

  27. H.-J. Su, J. Mccarthy, M. Sosonkina, and L.T. Watson, Algorithm 857: POL-SYS_GLP - A parallel general linear product homotopy code for solving poly-nomial systems of equations, ACM Trans. Math. Software, 32 (4):561-579, 2006. Software available at www.vrac.iastate.edu/-haijunsu.

    Article  MathSciNet  Google Scholar 

  28. J. Verschelde, Algorithm 795: PHCpack: a general-purpose solver for poly-nomial systems by homotopy continuation, ACM Trans. Math. Software, 25 (2):251-276, 1999. Software available at www.math.uic.edu/-jan.

    Article  MATH  Google Scholar 

  29. J. Verschelde and Y. Zhuang, Parallel implementation of the polyhedral homo-topy method, in proceedings of ICPPW '06 (International Conference Work-shops on Parallel Processing), IEEE Computer Society, Washington, DC, 481-488, 2006.

    Google Scholar 

  30. C.W. Wampler, HomLab: Homotopy Continuation Lab, available at www.nd.edu/ +vcwamplel.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W. (2008). Software for Numerical Algebraic Geometry: A Paradigm and Progress Towards its Implementation. In: Stillman, M., Verschelde, J., Takayama, N. (eds) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol 148. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78133-4_1

Download citation

Publish with us

Policies and ethics