Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
executing in one cycle.
- 2.
References
S. Bartolini, I. Branovic, R. Giorgi, and E. Martinelli. A performance evaluation of arm isa extension for elliptic curve cryptography over binary finite fields. In Computer Architecture and High Performance Computing, 2004. SBAC-PAD 2004. 16th Symposium on, pp. 238–245, 27-29 Oct. 2004. 10.1109/SBAC-PAD.2004.5.
G. M. Bertoni, L. Breveglieri, F. Roberto, and F. Regazzoni. Speeding up AES by extending a 32-bit processor instruction set. In Application-specific Systems, Architectures and Processors, 2006. ASAP ’06. International Conference on, pp. 275–282, Sept. 2006. 10.1109/ASAP.2006.62.
I. Branovic, R. Giorgi, and E. Martinelli. A workload characterization of elliptic curve cryptography methods in embedded environments. ACM SIGARCH Computer Architecture News, 32 (3): 27–34, June 2004. ISSN 0163-5964. http://doi.acm.org/10.1145/1024295.1024299.
M. Brown, D. Hankerson, J. Lépez, and A. Menezes. Software implementation of the nist elliptic curves over prime fields. In CT-RSA 2001: Proceedings of the 2001 Conference on Topics in Cryptology, pp. 250–265, London, UK, 2001. Springer-Verlag. ISBN 3-540-41898-9.
D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. SIGARCH Computer Architecture News, 25 (3): 13–25, 1997. ISSN 0163-5964.
J. Burke, J. McDonald, and T. Austin. Architectural support for fast symmetric-key cryptography. SIGPLAN Not., 35 (11): 178–189, 2000. ISSN 0362-1340. http://doi.acm.org/10.1145/356989.357006.
P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal, 29(4):526–538, 1990.
Counterpane Internet Security Inc. The blowfish encryption algorithm, 1993. http://www.counterpane.com/blowfish.html.
J. Daemen and V. Rijmen. The design of Rijndael: AES — the Advanced Encryption Standard. Springer-Verlag, 2002. ISBN 3-540-42580-2.
H. Eberle, A. Wander, N. Gura, Sheueling Chang-Shantz, and V. Gupta. Architectural extensions for elliptic curve cryptography over gf(2/sup m/) on 8-bit microprocessors. In Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on, pp. 343–349, 23-25 July 2005. 10.1109/ASAP.2005.15.
H. Eberle, N. Gura, S. C. Shantz, V. Gupta, L. Rarick, and S. Sundaram. A public-key cryptographic processor for rsa and ecc. In ASAP ’04: Proceedings of the Application-Specific Systems, Architectures and Processors, 15th IEEE International Conference on (ASAP’04), pp. 98–110, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2226-2. http://dx.doi.org/10.1109/ASAP.2004.6.
A. J. Elbirt. Fast and efficient implementation of AES via instruction set extensions. In AINAW ’07: Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops, pp. 396–403, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2847-3. http://dx.doi.org/10.1109/AINAW.2007.182.
Federal Information Processing Standards Publication 46-1. Data encryption standard (DES), 1988.
Federal Information Processing Standards Publication 46-3. Data encryption standard (DES) - tdea, 1999.
Federal Information Processing Standards Publication 197. Specification for the advanced encryption standard (AES), 2001.
A. M. Fiskiran and R. B. Lee. Evaluating instruction set extensions for fast arithmetic on binary finite fields. In 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors, 2004, pp. 125–136. IEEE Computer Society, 2004. ISBN 0-7695-2226-2.
A. M. Fiskiran and R. B. Lee. Performance scaling of cryptography operations in servers and mobile clients. In Proceedings of the Workshop on Building Block Engine Architectures for Computer Networks (BEACON), 2004.
J. R. Goodman. Energy scalable reconfigurable cryptographic hardware for portable applications. PhD thesis, Massachusetts Institute of Technology, Deptartment of Electrical Engineering and Computer Science, 2000.
C. Grabbe, M. Bednara, von zur Gathen, J. Shokrollahi, and J. Teich. A high performance vliw processor for finite field arithmetic. In Parallel and Distributed Processing Symposium, 2003. Proceedings. International, 6pp., 22–26 April 2003. 10.1109/IPDPS.2003.1213351.
J. Groβshädl and G.-A. Kamendje. Optimized RISC architecture for multiple-precision modular arithmetic. In International Conference on Security in Pervasive Computing, LNCS, 2003.
J. Groβshädl, S. S. Kumar, and C. Paar. Architectural support for arithmetic in optimal extension fields. In Application-Specific Systems, Architectures and Processors, 2004. Proceedings. 15th IEEE International Conference on, pp. 111–124, 2004. 10.1109/ASAP.2004.1342463.
J. Groβshädl and G.-A. Kamendje. Instruction set extension for fast elliptic curve cryptography over binary finite fields GF(\(2^m\)). In E. Deprettere, S. Bhattacharyya, J. Cavallaro, A. Darte, and L. Thiele, editors, Proceedings of the 14th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2003), pp. 455–468. IEEE Computer Society Press, 2003. ISBN 0-7695-1992-X.
J. Groβshädl and E. Sava cs. Instruction set extensions for fast arithmetic in finite fields GF(p) and GF(\(2^m\)). In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Systems — CHES 2004, volume 3156 of Lecture Notes in Computer Science, pp. 133–147. Springer Verlag, 2004. ISBN 3-540-22666-4.
M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. Mibench: A free, commercially representative embedded benchmark suite. In WWC ’01: Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop on, pp. 3–14, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7803-7315-4. http://dx.doi.org/10.1109/WWC.2001.15.
D. Hankerson, J. López, and A. Menezes. Software implementation of elliptic curve cryptography over binary fields. In International Workshop on Cryptographic Hardware and Embedded Systems - CHES, pp. 1–24, 2000.
D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003. ISBN 038795273X.
Y. Hilewitz and R. B. Lee. Performing advanced bit manipulations efficiently in general-purpose processors. In IEEE Symposium on Computer Arithmetic, pp. 251–260, 2007.
Y. Hilewitz, Z. Jerry Shi, and R. B. Lee. Comparing fast implementations of bit permutation instructions. In Proceedings of the 38th Annual Asilomar Conference on Signals, Systems, and Computers, pp. 1856–1863, “November” 2004.
A. Hodjat, L. Batina, D. Hwang, and I. Verbauwhede. Hw/sw co-design of a hyperelliptic curve cryptosystem using a microcode instruction set coprocessor. Integr. VLSI J., 40 (1): 45–51, 2007. ISSN 0167-9260. http://dx.doi.org/ 10.1016/j.vlsi.2005.12.011.
Intel. IA-64 Architecture Software Developer’s Manual, May 1999.
Intel. Ia-32 intel architecture software developer’s manual volume 1: Basic architecture, 2004.
Intel. Intel SSE4 programming reference, July 2007.
N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48: 203–209, ISSN 0025–5718 1987.
Ç. K. Koç and T. Acar. Montgomery Multiplication in GF(\(2^k\)). Des. Codes Cryptography, 14 (1): 57–69, 1998. ISSN 0925-1022. http://dx.doi.org/ 10.1023/A:1008208521515.
S. S. Kumar and C. Paar. Reconfigurable instruction set extension for enabling ecc on an 8-bit processor. In Jürgen Becker, Marco Platzner, and Serge Vernalde, editors, FPL, volume 3203 of Lecture Notes in Computer Science, pp. 586–595. Springer, 2004. ISBN 3-540-22989-2.
X. Lai. On the Design and Security of Block Ciphers. Hartung-Gorre Verlag, 1992.
R. B. Lee. Precision architecture. IEEE Computer, 22 (1): 78–91, January 1989.
R. B. Lee. Subword parallelism with MAX-2: Accelerating media processing with a minimal set of instruction extensions supporting efficient subword parallelism. IEEE Micro, 16 (4): 51–59, August 1996. ISSN 0272-1732.
R. B. Lee, Z. Shi, and X. Yang. Cryptography efficient permutation instructions for fast software. IEEE Micro, 21 (6): 56–69, 2001.
J. López and R. Dahab. Fast multiplication on elliptic curves over GF(\(2^m\)) without precomputation. In CHES: International Workshop on Cryptographic Hardware and Embedded Systems, CHES, LNCS, 1999.
J. López and R. Dahab. High-speed software multiplication in f2m. In INDOCRYPT ’00: Proceedings of the First International Conference on Progress in Cryptology, pp. 203–212, London, UK, 2000. Springer-Verlag. ISBN 3-540-41452-5.
J. P. McGregor and R. B. Lee. Architectural enhancements for fast subword permutations with repetitions in cryptographic applications. In IEEE International Conference on Computer Design: VLSI in Computers & Processors (ICCD ’01), pp. 453–461, Washington - Brussels - Tokyo, September 2001. IEEE. ISBN 0-7695-1200-3.
A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Norwell, MA, USA, 1994. ISBN 0792393686. Foreword By-Neal Koblitz.
V. S. Miller. Use of elliptic curves in cryptography. In CRYPTO, pp. 417–426, Santa Barbara, California, USA, August 1985.
National Institute of Standrds and Technology. Fips-197: Advanced encryption standard, November 2001. http://csrc.nist.gov/publications/fips/.
National Institute of Standrds and Technology. Fips-180-2: Secure hash standard, August 2002. http://csrc.nist.gov/publications/fips/.
C. Paar. The future of the art of cryptographic implementations. In Position Statement for the STORK Workshop, Brussels, Nov. 2002.
E. Savaş, A. F. Tenca, and Ç. K. Koç. A scalable and unified multiplier architecture for finite fields gf(p) and gf(\(2^m\)). In CHES ’00: Proceedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems, pp. 277–292, London, UK, 2000. Springer-Verlag. ISBN 3-540-41455-X.
Princeton Architecture Laboratory for Multimedia and Security (PALMS). Pax project, 2003. http://palms.ee.princeton.edu/PAX.
C. E. Shannon. Communication theory of secrecy systems. Bell Systen Technicl Journal, 28: 656–715, October 1949.
Z. Shi and R. B. Lee. Bit permutation instructions for accelerating software cryptography. In ASAP ’00: Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors, pp. 138, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0716-6.
Z. Shi, X. Yang, and R. B. Lee. Arbitrary bit permutations in one or two cycles. In ASAP ’03: Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors, pp. 237. IEEE Computer Society, 2003. ISBN 0-7695-1992-X.
S. Software. MIRACL: Multiprecision Integer and Rational Arithmetic C/C++ Library, 1988. http://www.shamus.ie/.
S. Tillich and J. Groβshädl. Accelerating AES Using Instruction Set Extensions for Elliptic Curve Cryptography. In Marina Gavrilova, Youngsong Mun, David Taniar, Osvaldo Gervasi, Kenneth Tan, and Vipin Kumar, editors, Computational Science and Its Applications - ICCSA 2005, volume 3481 of Lecture Notes in Computer Science, pp. 665–675. Springer, 2005.
S. Tillich and J. Groβshädl. Instruction Set Extensions for Efficient AES Implementation on 32-bit Processors. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems – CHES 2006, 8th International Workshop, Yokohama, Japan, October 10–13, 2006, Proceedings, volume 4249 of Lecture Notes in Computer Science, pp. 270–284. Springer, 2006.
A. K. Verma, L. Pozzi, P. Ienne, S. Tillich, and J. Groβshädl. When instruction set extensions change algorithm design: A study in elliptic curve cryptography. In 4th Workshop on Application-Specific Processors (WASP 2005), p. 2–9, Jersey City, NJ, USA, September 2005.
L. Wu, C. Weaver, and T. Austin. Cryptomaniac: a fast flexible architecture for secure communication. In ISCA ’01: Proceedings of the 28th annual international symposium on Computer architecture, pages 110–119, New York, NY, USA, 2001. ACM Press. ISBN 0-7695-1162-7. http://doi.acm.org/ 10.1145/379240.379256.
X. Yang and R. Lee. Fast subword permutation instructions using omega and flip network stages. In ICCD ’00: Proceedings of the 2000 IEEE International Conference on Computer Design, pp. 15–22, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0801-4.
X. Yang, M. Vachharajani, and R. Lee. Fast subword permutation instructions based on butterfly networks. In Proceedings of SPIE, Media Processor, pp. 80–86, January 2000.
P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Bartolini, S., Giorgi, R., Martinelli, E. (2009). Instruction Set Extensions for Cryptographic Applications. In: Koç, Ç.K. (eds) Cryptographic Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71817-0_9
Download citation
DOI: https://doi.org/10.1007/978-0-387-71817-0_9
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-71816-3
Online ISBN: 978-0-387-71817-0
eBook Packages: EngineeringEngineering (R0)