iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-0-387-30440-3_489
Social Network Analysis, Large-Scale | SpringerLink
Skip to main content

Social Network Analysis, Large-Scale

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

network is based on two sets: a set of vertices (nodes), that represent the selected units, and a set of lines (links), thatrepresent ties between units. Each line has two vertices as its end‐points; ifthey are equal it is called a  loop . Vertices and lines forma  graph . A line can be directed – an arc , or undirected – an edge .

Additional data about vertices or lines are usually known – their properties (attributes). Forexample: name/label, type, value, position, … In general

$$ \text{Network $=$ Graph $+$ Data}\:. $$

The data can be measured or computed.

Formally, a network \( {\mathcal{N}=(\mathcal{V},\mathcal{L},\mathcal{P},\mathcal{W}) } \) consists of the following:

  • graph \( { \mathcal{G}=(\mathcal{V},\mathcal{L}) } \), where \( { \mathcal{V} } \) is the set of vertices and \( { \mathcal{L}=\mathcal{E}\cup\mathcal{A} } \). \( { \mathcal{E}\cap\mathcal{A} = \emptyset } \) is the set of lines. \( { \mathcal{A} } \) is the set of arcs and \( {...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Glossary:

For the basic notions on graphs and networks see the Articlea Wouter de Nooy: Social Network Analysis, Graph Theoretical Approaches to.

Network:

consists of vertices linked by lines and additional data about vertices and/or lines.

Network decomposition:

identification of parts of network and their interconnections. Usually it is described by a partition of set of vertices or set of lines.

Time complexity of algorithm:

describes how the time needed to run the algorithm depends on the size of the input data.

Reduction of network:

a network obtained by shrinking each cluster from a given partition into a vertex.

Condensation:

a reduction for strong connectivity partition.

Cut:

a subnetwork of vertices/lines with values of selected property above given threshold.

Island:

a connected subnetwork of selected size of (locally) important, with respect to selected property, vertices/lines.

Pattern searching:

identification of all appearances of selected small subnetwork (pattern or fragment) in a given network.

Topological sort:

procedure to determine a compatible ordering in acyclic network.

Bibliography

Primary Literature

  1. Abello J, Pardalos PM, Resende MG (2002) Handbook of Massive Data Sets. Springer, Heidelberg

    Google Scholar 

  2. Adamic LA, Lukose RM, Huberman BA (2002) Local Search in Unstructured Networks. In: Bornholdt S, Schuster HG (eds) Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Berlin

    Google Scholar 

  3. Ahmed A, Batagelj V, Fu X, Hong SH, Merrick D, Mrvar A (2007) Visualisation and Analysis of the Internet Movie Database. Proceedings of the Asia-Pacific Symposium on Visualisation (APVIS2007), Sydney, Australia, 5–7 Feb. IEEE, New York, pp 17–24

    Google Scholar 

  4. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Google Scholar 

  5. Alvarez-Hamelin JI, Dall'Asta L, Barrat A, Vespignani A (2005) k‑core decomposition: a tool for the visualization of large scale networks. cs.NI/0504107 published in Advances in Neural Information Processing Systems 18, Canada, 2006

    Google Scholar 

  6. Batagelj V (1989) Similarity measures between structured objects. In: Graovac A (ed) Proceedings of International Course and Conference on the Interfaces between Mathematics, Chemistry and Computer Science, Dubrovnik, 20–25 June 1988. Studies in Physical and Theoretical Chemistry, vol 63. Elsevier/North-Holland, Amsterdam, pp 25–40

    Google Scholar 

  7. Batagelj V, Brandes U (2005) Efficient Generation of Large Random Networks. Phys Rev E 71:036113

    ADS  Google Scholar 

  8. Batagelj V, Ferligoj A (2000) Clustering relational data. In: Gaul W, Opitz O, Schader M (eds) Data Analysis. Springer, Berlin, pp 3–15

    Google Scholar 

  9. Batagelj V, Mrvar A (2000) Some Analyses of Erdős Collaboration Graph. Soc Netw 22:173–186

    MathSciNet  Google Scholar 

  10. Batagelj V, Mrvar A (2001) A Subquadratic Triad Census Algorithm for Large Sparse Networks with Small Maximum Degree. Soc Netw 23:237–43

    Google Scholar 

  11. Batagelj V, Mrvar A (2007) Hierarchical clustering with relational constraints of large data sets. 6th Slovenian International Conference on Graph Theory, Bled, 24–30 June

    Google Scholar 

  12. Batagelj V, Mrvar A (2008) Analysis of kinship relations with Pajek. Soc Sci Comput Rev 26(2):224–246

    Google Scholar 

  13. Batagelj V, Zaveršnik M (2002) Generalized Cores. arxiv cs.DS/0202039

    Google Scholar 

  14. Batagelj V, Zaveršnik M (2007) Short cycle connectivity. Discret Math 307(3–5):310–318

    Google Scholar 

  15. Bollobás B (2001) Random Graphs. Cambridge University Press, Cambridge

    Google Scholar 

  16. Brandes U (2001) A Faster Algorithm for Betweenness Centrality. J Math Soc 25(2):163–177

    Google Scholar 

  17. Breiger RL (2004) The analysis of social networks. In: Hardy M, Bryman A (eds) Handbook of data analysis. Sage, London, pp 505–526

    Google Scholar 

  18. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: A Recursive Model for Graph Mining. In: SIAM Data Mining 2004, Orlando, Florida, SIAM

    Google Scholar 

  19. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, Cambridge

    Google Scholar 

  20. Doreian P, Batagelj V, Ferligoj A (2000) Symmetric-Acyclic Decompositions of Networks. J Classif 17(1):3–28

    MathSciNet  Google Scholar 

  21. Doreian P, Batagelj V, Ferligoj A (2005) Generalized Blockmodeling. Cambridge University Press, Cambridge

    Google Scholar 

  22. Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet and www. Oxford University Press, Oxford

    Google Scholar 

  23. Ferligoj A, Batagelj V (1983) Some types of clustering with relational constraints. Psychometrika 48(4):541–552

    MathSciNet  Google Scholar 

  24. Freeman LC (1979) Centrality in Social Networks: A Conceptual Clarification. Soc Netw 1:211–213

    Google Scholar 

  25. Garfield E, Sher IH, Torpie RJ (1964) The Use of Citation Data in Writing the History of Science. The Institute for Scientific Information, Philadelphia

    Google Scholar 

  26. Granovetter M (1973) The Strength of Weak Ties. Am J Sociol 78:1360–80

    Google Scholar 

  27. Harary F, Norman RZ, Cartwright D (1965) Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New York

    Google Scholar 

  28. Huisman M, van Duijn MAJ (2005) Software for social network analysis. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge, pp 270–316

    Google Scholar 

  29. Hummon NP, Doreian P (1990) Computational Methods for Social Network Analysis. Soc Netw 12:273–288

    Google Scholar 

  30. Kleinberg J (1998) Authoritative sources in a hyperlinked environment. Proc 9th ACM-SIAM Symposium on Discrete Algorithms

    Google Scholar 

  31. Kleinberg J, Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) The Web as a graph: measurements, models and methods. Proc of the 5th International Computing and combinatorics Conference

    Google Scholar 

  32. Leskovec J, Kleinberg J, Faloutsos C (2006) Laws of Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) vol 1, issue 1, article 2

    Google Scholar 

  33. Li L, Alderson D, Tanaka R, Doyle JC, Willinger W (2007) Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications. cond-mat/0501169, Internet Math 2(4):431–523

    Google Scholar 

  34. Mane KK, Börner K (2004) Mapping topics and topic bursts in PNAS. Proc Natl Acad Sci USA 101:5287–5290

    Google Scholar 

  35. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    MathSciNet  ADS  Google Scholar 

  36. Newman MEJ, Barabási AL, Watts D (2006) The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, Princeton

    Google Scholar 

  37. Pennock DM, Flake GW, Lawrence S, Glover EJ, Giles CL (2002) Winners don't take all: Characterizing the competition for links on the web. Proc Natl Acad Sci USA 99(8):5207–5211

    ADS  Google Scholar 

  38. Seidman SB (1983) Network Structure And Minimum Degree. Soc Netw 5:269–287

    MathSciNet  Google Scholar 

  39. Schank T, Wagner D (2005) Finding, counting and listing all triangles in large graphs, an experimental study. In: Workshop on Experimental and Efficient Algorithms (WEA). Lecture Notes in Computer Science, vol 3503, Springer, pp 606–609

    Google Scholar 

  40. Snyder D, Kick E (1979) The World System and World Trade: An Empirical Exploration of Conceptual Conflicts. Sociol Q 20(1):23–36

    Google Scholar 

  41. Snijders TAB (2005) Models for Longitudinal Network Data. In: Carrington P, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, New York

    Google Scholar 

  42. Stuckenschmidt H, Klein M (2004) Structure-Based Partitioning of Large Concept Hierarchies. Proc of the 3rd International Semantic Web Conference ISWC 2004, Hiroshima, Japan

    Google Scholar 

  43. Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge

    Google Scholar 

  44. White DR, Batagelj V, Mrvar A (1999) Analyzing Large Kinship and Marriage Networks with Pgraph and Pajek. Soc Sci Comput Rev 17:245–274

    Google Scholar 

  45. Zaveršnik M, Batagelj V (2004) Islands. Slides from Sunbelt XXIV, Portorož, Slovenia, 12–16 May

    Google Scholar 

Books and Reviews

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  2. Batagelj V, Mrvar A (2003) Pajek – Analysis and Visualization of Large Networks. In: Jünger M, Mutzel P (eds) Graph Drawing Software. Springer, Berlin, pp 77–103

    Google Scholar 

  3. Brandes U, Erlebach T (2005) Network Analysis: Methodological Foundations. Lecture Notes in Computer Science. Springer, Berlin

    Google Scholar 

  4. Carrington PJ, Scott J, Wasserman S (2005) Models and Methods in Social Network Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  5. Degenne A, Forsé M (1999) Introducing Social Networks. SAGE Publications, London

    Google Scholar 

  6. de Nooy W, Mrvar A, Batagelj V (2005) Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge

    Google Scholar 

  7. Knuth DE (1993) The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading

    Google Scholar 

  8. Scott JP (2000) Social Network Analysis: A Handbook. SAGE Publications, London

    Google Scholar 

Web Resources

  1. Center for Complex Network Research, Notre Dame: http://www.nd.edu/ networks/

  2. Center for Spatially Integrated Social Science: http://www.csiss.org/

  3. Complex Networks Collaboratory: http://cxnets.googlepages.com/

  4. Internet Movie Database http://www.imdb.com/

  5. Matthieu Latapy. Triangle computation web page. http://www-rp.lip6.fr/ latapy/Triangles/

  6. Nber: http://www.nber.org/patents/

  7. Netminer: http://www.netminer.com/

  8. Pajek: http://pajek.imfm.si data sets: http://vlado.fmf.uni-lj.si/pub/networks/data/

  9. The Edinburgh Associative Thesaurus: http://www.eat.rl.ac.uk/

  10. The Kansas Event Data System: http://web.ku.edu/keds/

  11. UCINET: http://www.analytictech.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Batagelj, V. (2009). Social Network Analysis, Large-Scale. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_489

Download citation

Publish with us

Policies and ethics