iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-0-387-30164-8_296
Explanation-Based Learning | SpringerLink
Skip to main content

Explanation-Based Learning

  • Reference work entry
Encyclopedia of Machine Learning
  • 742 Accesses

Synonyms

Analytical learning; Deductive learning; EBL; Utility problem

Definition

Explanation-Based Learning (EBL) is a principled method for exploiting available domain knowledge to improve supervised learning. Improvement can be in speed of learning, confidence of learning, accuracy of the learned concept, or a combination of these. In modern EBL the domain theory represents an expert’s approximate knowledge of complex systematic world behavior. It may be imperfect and incomplete. Inference over the domain knowledge provides analyticevidence that compliments the empirical evidence of the training data. By contrast, in original EBL the domain theory is required to be much stronger; inferred properties are guaranteed. Another important aspect of modern EBL is the interaction between domain knowledge and labeled training examples afforded by explanations. Interaction allows the nonlinear combination of evidence so that the resulting information about the target concept can be much...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Anderson, J. (1986). Knowledge compilation: The general learning mechanism. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning II (pp. 289–310). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Bruynooghe, M., De Raedt, L., & De Schreye, D. (1989). Explanation based program transformation. In IJCAI (pp. 407–412).

    Google Scholar 

  • Cohen, W. W. (1992). Abductive explanation-based learning: A solution to the multiple inconsistent explanation problem. Machine Learning, 8, 167–219.

    MATH  Google Scholar 

  • DeJong, G. (1981). Generalizations based on explanations. In IJCAI’81, the seventh international joint conference on artificial intelligence (pp. 67–69). Vancover, BC.

    Google Scholar 

  • DeJong, G. (2006). Toward robust real-world inference: A new perspective on explanation-based learning. In ECML06, the seventeenth European conference on machine learning (pp. 102–113). Heidelberg: Springer.

    Google Scholar 

  • DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1(2), 145–176.

    Google Scholar 

  • Etzioni, O. (1993). A structural theory of explanation-based learning. Artificial Intelligence, 60(1), 93–139.

    Article  MathSciNet  Google Scholar 

  • Fikes, R., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot plans. Artificial Intelligence, 3(1–3), 251–288.

    Article  Google Scholar 

  • Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-based methods for inductive learning. Machine Learning, 4, 187–226.

    Article  Google Scholar 

  • Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997). Using and combining predictors that specialize. In Twenty-ninth annual ACM symposium on the theory of computing (pp. 334–343). El Paso, TX.

    Google Scholar 

  • Genest, J., Matwin, S., & Plante, B. (1990). Explanation-based learning with incomplete theories: A three-step approach. In proceedings of the seventh international conference on machine learning (pp. 286–294).

    Google Scholar 

  • Gratch, J., & DeJong, G. (1992). Composer: A probabilistic solution to the utility problem in speed-up learning. In AAAI (pp. 235–240).

    Google Scholar 

  • Greiner, R., & Jurisica, I. (1992). A statistical approach to solving the EBL utility problem. In National conference on artificial intelligence (pp. 241–248). San Jose, CA.

    Google Scholar 

  • Hirsh, H. (1987). Explanation-based generalization in a logic-programming environment. In IJCAI (pp. 221–227). Milan, Italy.

    Google Scholar 

  • Kimmig, A., De Raedt, L., & Toivonen, H. (2007). Probabilistic explanation based learning. In ECML’07, the eighteenth European conference on machine learning (pp. 176–187).

    Google Scholar 

  • Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in soar: The anatomy of a general learning mechanism. Machine Learning, 1(1), 11–46.

    Google Scholar 

  • Lim, S. H., Wang, L.-L., & DeJong, G. (2007). Explanation-based feature construction. In IJCAI’07, the twentieth international joint conference on artificial intelligence (pp. 931–936)

    Google Scholar 

  • McCarthy, J. (1980). Circumscription – a form of non-monotonic reasoning. Artificial Intelligence, 13, 27–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning. Artificial Intelligence, 42(2–3), 363–391.

    Article  Google Scholar 

  • Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generalization: A unifying view. Machine Learning, 1(1), 47–80.

    Google Scholar 

  • Ourston, D., & Mooney, R. J. (1994). Theory refinement combining analytical and empirical methods. Artificial Intelligence, 66(2), 273–309.

    Article  MATH  MathSciNet  Google Scholar 

  • Pazzani, M. J., & Kibler, D. F. (1992). The utility of knowledge in inductive learning. Machine Learning, 9, 57–94.

    Google Scholar 

  • Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Russell, S. J., & Grosof, B. N. (1987). A declarative approach to bias in concept learning. In AAAI (pp. 505–510). Seattle, WA.

    Google Scholar 

  • Sun, Q., & DeJong, G. (2005). Feature kernel functions: Improving svms using high-level knowledge. In CVPR (2) (pp. 177–183)

    Google Scholar 

  • Thrun, S., & Mitchell, T. M. (1993). Integrating inductive neural network learning and explanation-based learning. In IJCAI (pp. 930–936). Chambery, France.

    Google Scholar 

  • Towell, G. G., Craven, M., & Shavlik, J. W. (1991). Constructive induction in knowledge-based neural networks. In proceedings of the eighth international conference on machine learning (pp. 213–217)

    Google Scholar 

  • Zelle, J. M., & Mooney, R. J. (1993). Combining Foil and EBG to speed-up logic programs. In IJCAI (pp. 1106–1113). Chambery, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

DeJong, G., Lim, S.H. (2011). Explanation-Based Learning. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_296

Download citation

Publish with us

Policies and ethics