iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-56279-6_54
Linear time algorithms for k-cutwidth problem | SpringerLink
Skip to main content

Linear time algorithms for k-cutwidth problem

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 650))

Included in the following conference series:

  • 143 Accesses

Abstract

The Min Cut Linear Arrangement problem is to find a linear arrangement for a given graph such that the cutwidth is minimized. This problem has important applications in VLSI layout systems. It is known that this problem is NP-complete when the input is a general graph with maximum vertex degree at most 3. In this paper, we will first present a linear time algorithm to recognize the small cutwidth trees. The approach we used in this algorithm can then be easily extended to recognize the general graphs with cutwidth 3 in O(n) time.

This work was supported by the National Science Council, Taiwan, R.O.C. Grant NSC 80-0404-E194-03

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alok Aggarwal, Richard J. Anderson, and Ming Yanf Kao, “Parallel Depth-First search in general directed graphs,” SIAM J. Comput., Vol. 19, No. 2, April 1990, pp. 397–409.

    Article  Google Scholar 

  2. C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam 1973.

    Google Scholar 

  3. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading, 1990.

    Google Scholar 

  4. Fan R. K. Chung, “On the Cutwidth and the Topological Bandwidth of a Tree,” SIAM J. Alg. Disc. Meth., Vol. 6, No. 2, April 1985, pp. 268–277.

    Google Scholar 

  5. M. J. Chung, F. Makedon, I. H. Sudborough and J. Tarner, ”Polynomial algorithm for the min-cut linear arrangement problem on degree restricted trees,” SIAM J. Comput., Vol. 14, No. 1, 1985, pp. 158–177.

    Google Scholar 

  6. A. E. Dunlop and B. W. Kernighan, ”A Procedure for Placement of Standard-Cell VLSI Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. CAD-4, No. 1, Jan. 1985, pp. 92–98.

    Article  Google Scholar 

  7. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Franciso 1979.

    Google Scholar 

  8. E. Gurari, and I. H. Sudborough, ”Improved dynamic programming algorithms for bandwidth minimization and min-cut linear arrangement problem,” J. Algorithms, Vol. 5, 1984, pp. 531–546.

    Article  Google Scholar 

  9. M. Y. Kao, ”All graphs have cycle separators and planar directed depth-first search is in DNC,” in Proc. 3rd Aegean Workship on Computing, Corfu, Greece, J. H. Reif, ed.; Lecture Notes in Computer Science 319, Springer-Verlay, Berlin, New York, 1988, pp. 53–63.

    Google Scholar 

  10. Thomas Lengauer, ”Upper and Lower Bounds on the Complexity of the Min-Cut Linear Arrangement Problem on Trees,” SIAM J. Alg. Disc. Meth., Vol. 3, No. 1, March 1982, pp. 99–113.

    Google Scholar 

  11. A. D. Lopez, and H. F. S. Law, ”A Dense Gate Matrix Layout Method for MOS VLSI,” IEEE Trans. on Electronic Devices, ED-27, 8, 1980, pp. 1671–1675.

    Google Scholar 

  12. F. S. Makedon, C. H. Papadimitriou and I. H. Sudborough, ”Topological Bandwidth,” SIAM J. Alg. Disc. Meth., Vol. 6, No. 3, July 1985, pp. 418–444.

    Google Scholar 

  13. Sanda L. Mitchell, ”Linear Algorithms to Recognize Oulplanar and Maximal Outerplanar Graphs,” Information Processing Letters, Vol. 9, No. 5, December 1979, pp. 229–232.

    Article  Google Scholar 

  14. T. H. Ohtsuki, H. Mori, E. S. Kuh, T. Kashiwabara and T. Fujiswa, ”One Dimensional Logic Gate Assignment and Interval Graphs,” IEEE Trans. Circuits and Systems, Vol. 26, 1979, pp. 675–684.

    Article  Google Scholar 

  15. A. L. Rosenberg, ”The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors,” IEEE Trans. on Computers, Vol. C-32, No. 10, Oct. 1983, pp. 902–910.

    Google Scholar 

  16. R. E. Tarjan, ”An Efficient Parallel Biconnectivity Algorithm,” SIAM J. Comput., Vol. 14, No. 4, November 1985, pp. 862–874.

    MathSciNet  Google Scholar 

  17. M. Yannakakis, ”A Polynomial Algorithm for the Min Cut Linear Arrangement of Trees,” J. ACM., Vol. 32, No. 4, 1985, pp. 950–988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Toshihide Ibaraki Yasuyoshi Inagaki Kazuo Iwama Takao Nishizeki Masafumi Yamashita

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, MH., Lee, SL. (1992). Linear time algorithms for k-cutwidth problem. In: Ibaraki, T., Inagaki, Y., Iwama, K., Nishizeki, T., Yamashita, M. (eds) Algorithms and Computation. ISAAC 1992. Lecture Notes in Computer Science, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56279-6_54

Download citation

  • DOI: https://doi.org/10.1007/3-540-56279-6_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56279-5

  • Online ISBN: 978-3-540-47501-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics