iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-55210-3_193
On complexity classes and algorithmically random languages | SpringerLink
Skip to main content

On complexity classes and algorithmically random languages

Extended abstract

  • Conference paper
  • First Online:
STACS 92 (STACS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 577))

Included in the following conference series:

Abstract

Every class C of languages satisfying a simple topological condition is shown to have probability one if and only if it contains some language that is algorithmically random in the sense of Martin-Löf. This result is used to derive separation properties of algorithmically random oracles and to give characterizations of the complexity classes P, BPP, AM, and PH in terms of reducibility to such oracles. These characterizations lead to the following result:

  1. (i)

    P = NP if and only if there exists an algorithmically random set that is ≤ Pbtt -hard for NP.

  2. (ii)

    P = PSPACE if and only if there exists an algorithmically random set that is ≤ Pbtt -hard for PSPACE.

  3. (iii)

    The polynomial-time hierarchy collapses if and only if there exists k>0 such that some algorithmically random set is σ Pk -hard for PH.

  4. (iv)

    PH = PSPACE if and only if there exists a algorithmically random set that is PH-hard for PSPACE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Ambos-Spies. Randomness, relativations, and polynomial reducibilities. In Lecture Notes in Computer Sci. 223, pages 23–34. Proc. 1st Conf. Stucture in Complexity Theory, Springer-Verlag, 1986.

    Google Scholar 

  2. J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. J. Assoc. Comput. Mach., 33:603–617, 1986.

    Google Scholar 

  3. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Springer-Verlag, 1988.

    Google Scholar 

  4. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity II. Springer-Verlag, 1990.

    Google Scholar 

  5. C. Bennett. Logical depth and physical complexity. In R. Herken (ed.), The Universal Turing Machine: A Half-Century Survey, pages 227–257. Oxford University Press, 1988.

    Google Scholar 

  6. C. Bennett and J. Gill. Relative to a random oracle PA ≠ NPA ≠ co-NPA with probability 1. SIAM J. Computing, 10:96–113, 1981.

    Google Scholar 

  7. J.-Y. Cai. Probability one separation of the boolean hierarchy. In Lecture Notes in Computer Sci. 38, pages 148–158. STACS 87, Springer Verlag, 1987.

    Google Scholar 

  8. J.-Y. Cai. With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy. J. Comput. Systems Sci., 38:68–85, 1989.

    Google Scholar 

  9. R. Karp and R. Lipton. Turing machines, that take advice. L'Enseignement Mathématique, 28 2nd series:191–209, 1982.

    Google Scholar 

  10. T. Long and A. Selman. Relativizing complexity classes with sparse oracles. J. Assoc. Comput. Mach., 33:618–627, 1986.

    Google Scholar 

  11. P. Martin-Löf. On the definition of random sequences. Info. and Control, 9:602–619, 1966.

    Google Scholar 

  12. P. Martin-Löf. Complexity oscillations in infinite binary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 19:225–230, 1971.

    Google Scholar 

  13. M. Ogiwara and A. Lozano. On one query self reducible sets. In Proc. 6th IEEE Conference on Structure in Complexity Theory, pages 139–151, 1991.

    Google Scholar 

  14. M. Ogiwara and 0. Watanabe. On polynomial bounded truth table reducibility of NP sets to sparse sets. SIAM J. Computing, 20:471–483, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alain Finkel Matthias Jantzen

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Book, R.V., Lutz, J.H., Wagner, K.W. (1992). On complexity classes and algorithmically random languages. In: Finkel, A., Jantzen, M. (eds) STACS 92. STACS 1992. Lecture Notes in Computer Science, vol 577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55210-3_193

Download citation

  • DOI: https://doi.org/10.1007/3-540-55210-3_193

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55210-9

  • Online ISBN: 978-3-540-46775-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics