Abstract
We will show how any primitive recursive function may be encoded in a finite canonical string rewriting system. Using these encodings for every primitive recursive function f (and even for every recursively enumerable set ©) a finite string rewriting system ℜ and a noetherian ordering > may be constructed such that completion of ℜ with respect to > will generate a divergence sequence that encodes explicitly the input/output behaviour of f (or the set ©, respectively). Furthermore, we will show by an example that if completion of a set ℜ with respect to a noetherian ordering > diverges, then there need not exist any rule that causes infinitely many other ones by overlapping.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avenhaus, J.: "Transforming infinite rewrite systems into finite rewrite systems by embedding techniques", SEKI Report SR-89-21, Universität Kaiserslautern, 1989
Book, R.V.: "Thue systems as rewriting systems", Proc. RTA '85, Dijon, 1985, pp. 63–94
Chen, H. and Hsiang, J. and Kong, H.-C.: "On finite representations of infinite sequences of terms", Preprint, Extended abstract in: Proc. CTRS '90, Montreal, 1990, pp. 37–44
Dershowitz, N., Marcus, L. and Tarlecki, A.: "Existence, uniqueness, and construction of rewrite systems. SIAM Journal on Computation, 17(4), 1988, pp. 629–639
Gramlich, B.: "Unification of term schemes — Theory and Applications", SEKI Report SR-88-18, Universität Kaiserslautern, 1988
Hermann, M.: "Vademecum of divergent term rewriting systems", Research report 88-R-082, Centre de Recherche en Informatique de Nancy, 1988.
Hermann, M.: "Chain properties of rule closures", Proc. STACS '89, Paderborn, 1989, pp. 339–347
Hermann, M.: "Crossed term rewriting systems", Research report 89-R-003, Centre de Recherche en Informatique de Nancy, 1989
Hermann, M. and Privara, I.: "On nontermination of Knuth-Bendix algorithm", Proc. ICALP '86, Rennes, 1986, pp. 146–156
Kirchner, H.: "Schematization of infinite sets of rewrite rules. Application to the divergence of completion processes", Proc. RTA '87, Bordeaux, 1987, pp. 180–191
Kirchner, H. and Hermann, M.: "Computing meta-rules from crossed rewrite systems", Preprint, Extended abstract in: Proc. CTRS '90, Montreal, 1990, p. 60
Lange, S.: "Towards a set of inference rules for solving divergence in Knuth-Bendix completion", Proc. All '89, Reinhardsbrunn Castle, 1989, pp. 304–316
Lange, S. and Jantke, K.P.: "Towards a learning calculus for solving divergence in Knuth-Bendix completion", Communications of the Algorithmic Learning Group, TH Leipzig, 1989, pp. 288–303
Meseguer, J. and Goguen, J.A.: "Initiality, induction, and computability", in: "Algebraic methods in semantics", ed. by M. Nivat and J.C. Reynolds, Cambridge University Press, 1985, pp. 459–541
Mong, C.-T. and Purdom, P.W.: "Divergence in the completion of rewriting systems", Technical report, Dept. of Comp. Science, Indiana University, 1987
Narendran, P. and Stillman, J.: "It is undecidable whether the Knuth-Bendix completion procedure generates a crossed pair", Proc. STACS '89, Paderborn, 1990, pp. 348–359
Sattler-Klein, A.: "Divergence phenomena during completion", Internal report 203/90, FB Informatik, Universität Kaiserslautern, 1990
Steinbach, J.: "Comparing on Strings: Iterated syllable ordering and recursive path orderings", SEKI Report SR-89-15, Universität Kaiserslautern, 1989
Thomas, M. and Jantke, K.P.: "Inductive inference for solving divergence in Knuth-Bendix completion", Proc. All '89, Reinhardsbrunn Castle, 1989, pp. 288–303
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sattler-Klein, A. (1991). Divergence phenomena during completion. In: Book, R.V. (eds) Rewriting Techniques and Applications. RTA 1991. Lecture Notes in Computer Science, vol 488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53904-2_111
Download citation
DOI: https://doi.org/10.1007/3-540-53904-2_111
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-53904-9
Online ISBN: 978-3-540-46383-2
eBook Packages: Springer Book Archive