iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-48483-3_21
Proof Normalization of Structured Algebraic Specifications Is Convergent | SpringerLink
Skip to main content

Proof Normalization of Structured Algebraic Specifications Is Convergent

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1589))

Abstract

In this paper we present a new natural deduction calculus for structured algebraic specifications and study proof transformations including cut elimination. As underlying language we choose an ASL-like kernel language which includes operators for composing specifications, renaming the signature and exporting a subsignature of a specification. To get a natural deduction calculus for structured specifications we combine a natural deduction calculus for first-order predicate logic with the proof rules for structured specifications. The main results are soundness and completeness of the calculus and convergence of the associated system of proof term reductions which extends a typed l-calculus by appropriate structural reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.R. Aspinall: Type Systems for Modular Programs and Specifications. PhD thesis, Univ. of Edinburgh, 1997.

    Google Scholar 

  2. F. Baader, T. Nipkow: Term Rewriting and All That, Cambridge Univ. Press, 1998.

    Google Scholar 

  3. H. Barendregt: The Lambda Calculus: Its Syntax and Semantics. Studies in Logics and the Foundations of Mathematics 103, Amsterdam: Elsevier, 1984.

    Google Scholar 

  4. U. Berger, H. Schwichtenberg: Program development by proof transformation. In H. Schwichtenberg (ed.): Proof and Computation, Springer ASI Series 139, 1995, 1–46.

    Google Scholar 

  5. J.A. Bergstra, J. Heering, P. Klint: Module algebra. J. ACM 37, 1990, 335–372.

    Article  Google Scholar 

  6. M.V. Cengarle: Formal specifications with higher-order parameterization. PhD thesis, LMU München, 1995.

    Google Scholar 

  7. J.N. Crossley, J.C. Sherpherdson: Extracting programs from proofs by an extension of the Curry-Howard process. In J.N. Crossley et al. (eds.): Logical Methods, Boston: Birkhäuser, 1993.

    Chapter  Google Scholar 

  8. J. Farres-Casals: Verification in ASL and related specification languages. PhD thesis, Univ. of Edinburgh, 1992.

    Google Scholar 

  9. G. Gentzen: Untersuchungen über das logische Schlieβen. Math. Zeitschrift 39, 1934, 176–210, 405-431.

    Article  MathSciNet  Google Scholar 

  10. J. Girard, Y. Lafont, P. Taylor: Proofs and Types. Cambridge Tracts in TCS 7, 1990.

    Google Scholar 

  11. R. Hennicker: Structured specifications with behavioural operators: Semantics, proof methods and applications. Habilitation thesis, LMU München, 1997.

    Google Scholar 

  12. R. Harper, D. Sannella, A. Tarlecki: Structure and representation in LF. In: Proc. 4th LICS `89, Asilomar, California, 1989, 226–237.

    Google Scholar 

  13. R. Hennicker, M. Wirsing: Proof systems for structured algebraic specifications: An overview. In B. Chlebus, L. Czaja (eds.): FCT `97, LNCS 1279, Springer, 1997, 19–37.

    Google Scholar 

  14. H. Peterreins: A natural-deduction-like calculus for structured specifications. PhD thesis, LMU München, 1996.

    Google Scholar 

  15. D. Sannella, R. M. Burstall: Structured theories in LCF. In G. Ausiello, M. Protasi (eds.): 8th CAAP, L’Aquila. LNCS 159, Springer, 1983, 377–391.

    Google Scholar 

  16. M. Wirsing: Algebraic specification. In J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier, Amsterdam, 1990, 675–788.

    Google Scholar 

  17. M. Wirsing: Structured specifications: syntax, semantics and proof calculus. In: F.L. Bauer et al. (eds.): Logic and Algebra of Specification, Springer, 1993, 411–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wirsing, M., Crossley, J.N., Peterreins, H. (1999). Proof Normalization of Structured Algebraic Specifications Is Convergent. In: Fiadeiro, J.L. (eds) Recent Trends in Algebraic Development Techniques. Lecture Notes in Computer Science, vol 1589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48483-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-48483-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66246-4

  • Online ISBN: 978-3-540-48483-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics