Abstract
We give a category theoretic framework for data-refinement in call-by-value programming languages. One approach to data refinement for the simply typed λ-calculus is given by generalising the notion of logical relation to one of lax logical relation, so that binary lax logical relations compose. So here, we generalise the notion of lax logical relation, defined in category theoretic terms, from the simply typed ?- calculus to the computational λ-calculus as a model of data refinement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fiore, M., Plotkin, G.D.: An axiomatisation of computationally adequate domain-theoretic models of FPC. Proc LICS 94. IEEE Press (1994) 92–102.
Gardiner, P.H.B., Morgan, C.:A single complete rule for data refinement. Formal Aspects of Computing 5 (1993) 367–382.
Hermida, C.A.: Fibrations, Logical Predicates and Indeterminates. Ph.D. thesis. Edinburgh (1993) available as ECS-LFCS-93-277.
Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1 (1972) 271–281.
Hoare, C.A.R.: Data refinement in a categorical setting. (1987) (draft).
Hoare, C.A.R., Jifeng, H.: Data refinement in a categorical setting. (1990) (draft).
Honsell, F., Sannella, D.T.: Pre-logical relations. Proc. CSL 99 (in this volume).
Johnstone, P.T., Power, A.J., Tsujishita, T., Watanabe, H., Worrell, J.: An Axiomatics for Categories of Transition Systems as Coalgebras. Proc LICS 98. IEEE Press (1998) 207–213.
Kelly, G.M.: Basic concepts of enriched category theory. Cambridge University Press (1982).
Kinoshita, Y., O’Hearn, P., Power, A.J., Takeyama, M., Tennent, R.D.: An Axiomatic Approach to Binary Logical Relations with Applications to Data Refinement. Proc TACS 97. LNCS 1281. Abadi and Ito (eds.) Springer (1997) 191–212.
Kinoshita, Y., Power, A.J.: Data refinement and algebraic structure. Acta Informatica (to appear).
Kinoshita, Y., Power, A.J., Takeyama, M.: Sketches. J. Pure Appl. Algebra (to appear).
Kinoshita, Y., Power, A.J., Watanabe, H.: A general completeness result in refinement (submitted).
Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic, Cambridge Studies in Advanced Mathematics 7. CUP (1986).
Ma, Q., Reynolds, J.C.: Types, abstraction and parametric polymorphism 2. Math. Found. of Prog. Lang. Sem. Lecture Notes in Computer Science. Springer (1991).
Mitchell, J.: Foundations for programming languages. Foundations of Computing Series. MIT Press (1996).
Moggi, E.: Computational Lambda-calculus and Monads. Proc LICS 89. IEEE Press (1989) 14–23.
Naumann, D.A.: Data refinement, call by value, and higher order programs. Formal Aspects of Computing 7 (1995) 752–762.
Power, A.J.: Premonoidal categories as categories with algebraic structure. Theoretical Computer Science (to appear).
Plotkin, G.D., Power, A.J., Sannella, D.T.: A generalised notion of logical relations. (submitted).
Power, A.J., Robinson, E.P. Premonoidal categories and notions of computation. Math. Structures in Computer Science 7 (1997) 453–468.
Power, A.J., Thielecke, H.: Environments, Continuation Semantics and Indexed Categories. Proc TACS 97. LNCS 1281 Abadi and Ito (eds) (1997) 391–414
Tennent, R.D.: Correctness of data representations in ALGOL-like languages. In: A Classical Mind, Essays in Honour of C.A.R. Hoare, A.W. Roscoe (ed.) Prentice-Hall (1994) 405–417.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kinoshita, Y., Power, J. (1999). Data-Refinement for Call-By-Value Programming Languages. In: Flum, J., Rodriguez-Artalejo, M. (eds) Computer Science Logic. CSL 1999. Lecture Notes in Computer Science, vol 1683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48168-0_39
Download citation
DOI: https://doi.org/10.1007/3-540-48168-0_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66536-6
Online ISBN: 978-3-540-48168-3
eBook Packages: Springer Book Archive