Abstract
The success of the application of neural networks to DNA microarray data comes from their efficiency in dealing with noisy data. Here we describe a combined approach that provides, at the same time, an accurate classification of samples in DNA microarray gene expression experiments (different cancer cell lines, in this case) and allows the extraction of the gene, or clusters of co-expressing genes, that account for these differences. Firstly we reduce the dataset of gene expression profiles to a number of non-redundant clusters of co-expressing genes. Then, the cluster’s average values are used for training a perceptron, that produces an accurate classification of different classes of cell lines. The weights that connect the gene clusters to the cell lines are used to asses the relative importance of the genes in the definition of these classes. Finally, the biological role for these groups of genes is discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brown, P.O. and Botsein, D.: Exploring the new world of the genome with DNA microar-rays. Nature Biotechnol. 14 (1999) 1675–1680.
Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., Powell J.I., Yang L., Marti G.E., Moore T., Hudson J. Jr, Lu L., Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenburger D.D., Armitage J.O., Warnke R., Levy R., Wilson W., Grever M.R., Byrd J.C., Botstein D., Brown P.O., Staudt LM. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403 (2000) 503–511
Alon U., Barkai N., Notterman D. A., Gish K., Ybarra S., Mack D., and Levine A. J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA. 96 (1999) 6745–6750
Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906–914.
Khan, J. Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu C.R., Peterson, C., Meltzer P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7 (2001) 673–579.
Dopazo, J. and Carazo, J.M.: Phylogenetic reconstruction using a growing neural network that adopts the topology of a phylogenetic tree. J. Mol. Evol 44 (1997) 226–233
Kohonen, T.: Self-organizing maps. Springer-Verlag, Berlin. (1997).
Dopazo, J.; Zanders, E.; Dragoni, I.; Amphlett, G.; Falciani, F. Methods and approaches in the analysis of gene expression data. J. Immunol Meth 250 (2001) 93–112
Herrero, J., Valencia, A. and Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 17 (2001) 126–136.
The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology. Nature Genet 25 (2000) 25–29
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mateos, A., Herrero, J., Dopazo, J. (2002). Using Perceptrons for Supervised Classification of DNA Microarray Samples: Obtaining the Optimal Level of Information and Finding Differentially Expressed Genes. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_94
Download citation
DOI: https://doi.org/10.1007/3-540-46084-5_94
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44074-1
Online ISBN: 978-3-540-46084-8
eBook Packages: Springer Book Archive